1 / 53

ARMENIA2010

Ab-initio calculations of electronic and optical properties of graphane and related 2-D systems Olivia Pulci European Theoretical Spectroscopy Facilty (ETSF), and CNR-INFM, Dipartimento di Fisica Università di Roma Tor Vergata http://www.fisica.uniroma2.it/~cmtheo-group

cecil
Download Presentation

ARMENIA2010

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ab-initio calculations of electronic and optical properties of graphane and related 2-D systems Olivia Pulci European Theoretical Spectroscopy Facilty (ETSF), and CNR-INFM, Dipartimento di Fisica Università di Roma Tor Vergata http://www.fisica.uniroma2.it/~cmtheo-group http://www.etsf.eu olivia.pulci@roma2.infn.it ARMENIA2010

  2. Everything started with graphene Novoselov et al. Science 2004 • 3D: stacked in graphite • 2D: graphene • 1D: rolled in nanotubes • 0D: wrapped in fullerens • Unique physical properties: High carrier mobility Ambipolar field effect RT quantum Hall Single molecule detection Special mechanical properties ………………… For a review see for example: Castro et al. Rev. Mod. Phys. 81, 109 (2009) Allen et al. Chem. Rev. 110, 132 (2010)

  3. Semi-metal Functionalizing graphene Graphene+H->Graphane E(eV)

  4. OUTLINE • Ab-initio: Theoretical Approaches • Functionalizing Graphene with H: graphane • Other exotic 2D systems (Si, Ge, SiC) • conclusions

  5. OUTLINE • Ab-initio: Theoretical Approaches • Functionalizing Graphene with H: graphane • Other exotic 2D systems (Si, Ge, SiC) • conclusions

  6. v v v TDDFT AB-INITIO methods MBPT c c EXC c hn wcv W hn BSE DFT GW Optical properties ground state Band structure, I, A

  7. MBPT c c EXC c hn wcv W hn v v v BSE DFT GW 2) 3) 1) TDDFT AB-INITIO methods

  8. G: single particle Green’s function W: screened Coulomb interaction (Step 2) Lars Hedin 1965

  9. MBPT c c EXC c hn wcv W hn v v v BSE DFT GW 2) 3) 1) TDDFT For optical properties we need to go beyond: Bethe Salpeter Equation

  10. c e hn h v GW BSE Kernel: Step 3: calculation of optical spectra within the Bethe Salpeter Equation Absorption spectra A photon excites an electron from an occupied state to a conduction state Bethe Salpeter Equation (BSE) e-h exchange bound excitons

  11. Ab-initioapplicable to: • Generality, transferability 0D-3D • Detailed physical informations • Predictivity • Complex theory+large comp.cost Biological systems 3-D 1-D 0-D 2-D Nanowires Surfaces Nanoclusters bulks

  12. functionalizing graphene: graphane graphene + atomic H Elias et al. Science 2009 Ryu et al. Nanolett. 2008 reversible! Top view Top view 1.42 A-> 1.52 A (like C bulk) Side view Theoretically predicted in 2007 (Sofo et al PRB2007), synthesized in 2008

  13. Electron affinity E(vacuum) A A=electron affinity I A=E(vacuum)-E(CBM) E(CBM) I=Ionization potential I= E(vacuum)-E(TVB) Especially interesting when A<0 Technological applications (cold cathod emitters,…..)

  14. C(111):H NEA E(vacuum) A=E(vacuum)-E(CBM) =-1.4 eV (GW) (-0.6 eV in DFT) Exp:-1.27 eV (J.B. Cui et al PRL1998) A E(CBM) (1x1) bulk-like No states into the gap

  15. Electronegativity plays a role!

  16. graphene A(DFT)=4.21 eV graphane metallic Egap DFT: 3.5eV GW: 6.1 eV!! metal---> insulator transition A(DFT)=1.27 eV; A(GW)=0.4 eV >0!!

  17. WHY?? + dup ddown _ _ + Side view compensating dipoles

  18. Graphane NFES Lumo Homo Lumo+1 Nearly free electron states

  19. Graphane: optical properties DFT-RPA without H with H Dramatic changes in the optical absorption spectrum!

  20. Graphane optical properties: excitonic effects From Cudazzo et al. PRL 104 226804 (2010)

  21. Other exotic 2-d materials? • Graphene graphane • Silicene(*) (?) polysilane • Germene (?) germane (?) polygermyne • ……..? H H H (*) Ag(110):Si Guy Le Lay and coworkers : P. De Padova APL 2010 B. Aufray APL 2010 22 toys models in Sahin et al. PRB2009

  22. Silicon-based 2-D +H Polysilane top view Silicene Top view D=0.44 Angstrom Silicene Side view Polysilane Side view D=0.70 A Not planar!!! Si larger atomic radii

  23. Si-based 2-D Metallic! Wide gap semiconductor quasi-direct gap DFT gap: 2.36 eV GW gap: 4.6 eV Massless Dirac fermions at K

  24. Ge-based 2-D +H Germene Top view Germane Top view D= 0.63 Å D= 0.73 Å Germene Side view Germane Side view Not planar!!!

  25. Ge-sheets Metallic! semiconductor Gap at G: DFT gap: 1.34 eV GW gap: 3.55 eV Massless Dirac fermions at K

  26. NFES

  27. What can we learn?

  28. Beyond single particle approach:EXCITONIC EFFECTS c hn v OPTICAL PROPERTIES

  29. Excitonic effects Large Exciton binding energies!!! 2-D confinement + expected trend

  30. Further possible (?) 2D materials Si+C!!!! SILICONGRAPHaNE SiC:H SILICONGRAPHeNE SiC Side view Topview

  31. SiC based 2-D With H GAP EXISTS! On one side the affinity is smaller!!!

  32. SiC:H hn e- 2 eV hn e- Top and bottom semi-spaces have different ionization potential

  33. Conclusions • H on graphene (graphane): metal->insulator transition; electron affinity decreases by factor 10 • 2-d systems (C, Si, Ge) show strong excitonic effects, with bound excitons • SiC:H presents 2 different ionization potentials! (possible technological applications??)

  34. Thanks to: • Paola Gori (CNR-ISM, Roma) • Margherita Marsili (Roma2) • Viviana Garbuio (Roma2) • Ari P. Seitsonen (Zurich) • Friedhelm Bechstedt (IFTO Jena, Germany) • Rodolfo Del Sole (Roma2) • Antonio Cricenti (CNR-ISM, Roma)

  35. Research Undergraduates PhD Students Post Docs Other colleagues exp + Industry! Distribution: ABINIT FHI OCTOPUS Yambo DP+EXC TOSCA Development of codes Development of theory training Carrying on Projects for users

  36. BEAMLINES: Optics (O. Pulci) EELS (F. Sottile) X-ray (J. Rehr) Transport (P. Bokes) Time-resolved excitations (M. Marques) Photoemission (C. Verdozzi) Raman (G. Rignanese) new

  37. Next call for projects: deadline 26 October Thank you for your attention http://www.etsf.eu olivia.pulci@roma2.infn.it

  38. From Dirac’s equation: Si-C 1.79 Angstrom

  39. BEAMLINES: Optics (O. Pulci) EELS (F. Sottile) X-ray (J. Rehr) Transport (P. Bokes) Time-resolved excitations (M. Marques) Photoemission (C. Verdozzi) Raman (G. Rignanese) new

  40. G: single particle Green’s function W: screened Coulomb interaction (Step 2) Lars Hedin 1965

  41. Optical properties (DFT)

  42. Optical properties

  43. Comparison… Large oscillators strength in Si and Ge-sheets!!!

  44. ...not possible to solve it! Hamiltonian of N-electron system: • Biological systems • 0-D • 3-D • 1-D • 2-D • Nanoclusters • Nanowires • Surfaces • bulks

  45. Silicongraphane sandwich geometry NFE state C side

  46. 1964: Density Functional Theory E=E[n] 1998 Nobel Prize to Kohn n • Many Body Perturbation Theory Green’s function method GW + Bethe Salpeter Equation (1965-->today) • Time Dependent DFT (TDDFT) (Gross 1984) GROUND-STATE G EXCITED STATES n(t)

  47. C(001):H NEA E(vacuum) A E(CBM) Negative electron affinity A=E(vacuum)-E(CBM)=-1.5 eV (-0.7 eV in DFT) Exp: -1.3 eV (F. Maier et al PRB2001)

More Related