1 / 44

Using SchedFlow for Performance Evaluation of Workflow Applications

Using SchedFlow for Performance Evaluation of Workflow Applications. Elisa Heyman Gustavo Martínez Miquel Angel Senar Emilio Luque Universitat Aut ònoma de Barcelona Elisa.Heymann@uab.es. Barton P. Miller University of Wisconsin bart@cs.wisc.edu. 1. T1. T2. T3. T4. T5.

cecil
Download Presentation

Using SchedFlow for Performance Evaluation of Workflow Applications

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Using SchedFlow for Performance Evaluation of Workflow Applications Elisa Heyman Gustavo Martínez Miquel Angel Senar Emilio Luque UniversitatAutònoma de Barcelona Elisa.Heymann@uab.es Barton P. Miller University of Wisconsin bart@cs.wisc.edu 1

  2. 2 T1 T2 T3 T4 T5 T6 T7 Our Problem Scheduling Policies Workflow Engines

  3. 3 T1 T2 T3 T4 T5 T6 T7 Our Solution Scheduling Policies SchedFlow Workflow Engines

  4. 4 Outline • Introduction • SchedFlow • Experimental Study • Conclusions

  5. 5 Introduction • For executing a workflow on a distributed environment, we need: • Scheduling policy integrated into a • Workflow engine • Reduce makespan • Factors • Workloadsize • Inaccuratecomputing and communication times • Machines appearing/disapperingdynamically

  6. 6 Introduction • WithSchedFlow, weassessedtheinfluence of theworkloadonthemakespanconsidering: • Differentschedulingpolicies • Differentworkflowengines

  7. SchedFlow T1 Scheduler T2 T3 Scheduler Scheduler Scheduler T4 T5 T6 Controller Observer T7 Adaptor Adaptor UserPolicy API logs queue Task manager Scheduler WorkflowEngine

  8. SchedFlow T1 Theusersubmits a workflow T2 T3 Scheduler Scheduler Scheduler Scheduler T4 Controller Observer Adaptor Adaptor UserPolicy API logs queue Task manager Scheduler WorkflowEngine

  9. SchedFlow TheScheduler uses thespecifiedschedulingpolicyontheavailableresourcesdiscoveredbytheObserver. T1 M1 Scheduler T2 M2 Scheduler Scheduler Scheduler T3 M3 Controller Observer T4 M4 Adaptor Adaptor logs queue Task manager Scheduler WorkflowEngine

  10. SchedFlow Scheduler T2 M2 Scheduler Scheduler T1 Scheduler T3 M3 Controller Observer T4 M4 Adaptor Adaptor TheControllerreceivesthefirsttask-machine pairs logs queue Task manager M1 Scheduler WorkflowEngine

  11. SchedFlow Scheduler T2 M2 Scheduler Scheduler Scheduler T3 M3 Controller Observer T4 M4 Adaptor Adaptor T1 TheControllertellstheadaptorwhichengineto use. Theadaptordealswithformatting and enqueuesthetask. logs queue Task manager M1 Scheduler WorkflowEngine

  12. SchedFlow Scheduler T2 M2 Scheduler Scheduler Scheduler T3 M3 Controller Observer T4 M4 Adaptor Adaptor logs queue T1 Task manager M1 Scheduler WorkflowEngine

  13. SchedFlow Scheduler T2 M2 Scheduler Scheduler Scheduler T3 M3 Controller Observer T4 M4 Adaptor Adaptor TheEnginesendsthetasktotheassigned machine. TheObservercheckstheEngine log forfinishedtasks. logs queue T1 Task manager M1 Scheduler WorkflowEngine

  14. SchedFlow Scheduler T2 M2 Scheduler Scheduler Scheduler T3 M3 Controller Observer T4 M4 Adaptor Adaptor Whenthetaskfinishes, theObservernotifiestheScheduler. logs queue Task manager M1 Scheduler WorkflowEngine

  15. SchedFlow Scheduler Scheduler Scheduler T2 T3 Scheduler Controller Observer T4 M4 Adaptor Adaptor TheSchedulerfindsthetasksthathavetheirdependenciessatisfied and sendsthemtotheController. logs queue Task manager M2 Scheduler WorkflowEngine M3

  16. SchedFlow Scheduler Scheduler Scheduler Scheduler Controller Observer T4 M4 Adaptor Adaptor T2 T3 logs queue Task manager M2 Scheduler M3 WorkflowEngine

  17. SchedFlow Scheduler Scheduler Scheduler Scheduler Controller Observer T4 M4 Adaptor Adaptor logs queue T2 T3 Task manager M2 Scheduler WorkflowEngine M3

  18. SchedFlow T4 M4 Scheduler Scheduler Scheduler Scheduler Controller Observer Adaptor Adaptor logs queue T2 M2 Task manager M2 Scheduler T3 M3 WorkflowEngine M3

  19. SchedFlow T4 M4 Scheduler Scheduler Scheduler Scheduler Controller Observer Adaptor Adaptor T2 finishes OK. M3 isclaimed. logs queue M2 Task manager M2 Scheduler T3 WorkflowEngine M3

  20. SchedFlow T4 M4 Scheduler Scheduler Scheduler Scheduler Controller Observer Adaptor Adaptor TheObserverdetectstheproblem and T3 is removed from M3 and dynamcallyrescheduled. logs queue M2 Task manager M2 Scheduler T3 M3 WorkflowEngine M3

  21. SchedFlow T4 M4 Scheduler Scheduler T3 Scheduler Scheduler T3 isrescheduled. TheObserverdoesnotinclude M3 as anavailableresource. Controller Observer Adaptor Adaptor logs queue Task manager M2 Scheduler WorkflowEngine M3

  22. SchedFlow T4 M4 Scheduler Scheduler M2 T3 Scheduler Scheduler Controller Observer Adaptor Adaptor logs queue Task manager M2 Scheduler WorkflowEngine M3

  23. SchedFlow T4 M4 Scheduler Scheduler Scheduler T3 Scheduler Controller Observer Adaptor Adaptor logs queue Task manager M2 Scheduler WorkflowEngine M3

  24. SchedFlow T4 M4 Scheduler Scheduler Scheduler Scheduler Controller Observer Adaptor Adaptor T3 logs queue Task manager M2 Scheduler WorkflowEngine M3

  25. SchedFlow T4 M4 Scheduler Scheduler Scheduler Scheduler Controller Observer Adaptor Adaptor logs queue T3 Task manager M2 Scheduler WorkflowEngine M3

  26. SchedFlow T4 M4 Scheduler Scheduler Scheduler Scheduler Controller Observer Adaptor Adaptor logs queue T3 Task manager M2 Scheduler WorkflowEngine M3

  27. SchedFlow T4 M4 Scheduler Scheduler Scheduler Scheduler Controller Observer Adaptor Adaptor T3 finishes OK. TheObservernotifiestheScheduler, and itreleases T4. logs queue Task manager M2 Scheduler WorkflowEngine M3

  28. SchedFlow Scheduler Scheduler Scheduler T4 Scheduler Controller Observer Adaptor Adaptor logs queue Task manager Scheduler M4 WorkflowEngine

  29. SchedFlow Scheduler Scheduler Scheduler Scheduler Controller Observer Adaptor Adaptor T4 logs queue Task manager Scheduler M4 WorkflowEngine

  30. SchedFlow Scheduler Scheduler Scheduler Scheduler Controller Observer Adaptor Adaptor logs queue T4 Task manager Scheduler M4 WorkflowEngine

  31. SchedFlow Scheduler Scheduler Scheduler Scheduler Controller Observer Adaptor Adaptor When T4 finishestheObserver computes themakespan. logs queue Task manager T4 Scheduler M4 WorkflowEngine

  32. 32 Experimental Study • Execution environment: • 140 machines • Workflow applications: • Montage (53 tasks) • LIGO (81 tasks) • Workflow engines: • Condor-DAGMan 7.0 • Taverna 1.4.8 • Karajan 4_0_a1

  33. 33 Experimental Study • Schedulingpolicies: • Default • Min-min • HEFT • BMCT

  34. 34 Experimental Study • Input workload: • 400 MB • 1024 MB • Westudiedtheeffect of theschedulingpolicies. • Wemeasuredapplicationmakespan • Real executions

  35. 35 Results • MantageranonTaverna, DAGMan, Karajan • 400 MB input workload • 120 executions • Default schedulingpolicy

  36. 36 Results • SameexperimentsbutusingSchedFlow • Min-min, HEFT, BMCT • Rescheduling

  37. 37 Results • MantageranonTaverna, DAGMan, Karajan • 1024 MB input workload • 120 executions • Default schedulingpolicy

  38. 38 Results • SameexperimentsbutusingSchedFlow • Min-min, HEFT, BMCT • Rescheduling

  39. 39 Results • LIGO ranonTaverna, DAGMan, Karajan • 400 MB input workload • 120 executions • Default schedulingpolicy

  40. 40 Results • SameexperimentsbutusingSchedFlow • Min-min, HEFT, BMCT • Rescheduling

  41. 41 Results • LIGO ranonTaverna, DAGMan, Karajan • 1024 MB input workload • 120 executions • Default schedulingpolicy

  42. 42 Results • SameexperimentsbutusingSchedFlow • Min-min, HEFT, BMCT • Rescheduling

  43. 43 Conclusions • No single scheduling policy is the best for all scenarios • SchedFlow allows us to obtain better performance providing: • Flexibility regarding scheduling policies • Support for rescheduling • Integration with Workflow Engines

  44. Using SchedFlow for Performance Evaluation of Workflow Applications Elisa Heyman Gustavo Martínez Miquel Angel Senar Emilio Luque UniversitatAutònoma de Barcelona Elisa.Heymann@uab.es Barton P. Miller University of Wisconsin bart@cs.wisc.edu 44

More Related