490 likes | 641 Views
Convergence in (Social) Influence Networks. Silvio Frischknecht, Barbara Keller, Roger Wattenhofer. ETH Zurich – Distributed Computing – www.disco.ethz.ch. Simple World. 2 Opinions : Opinion changes : Whatever the majority of my friends think. b. b. b. b. b. What Can Happen?.
E N D
Convergence in (Social) Influence Networks Silvio Frischknecht, Barbara Keller, Roger Wattenhofer ETH Zurich – Distributed Computing – www.disco.ethz.ch
Simple World 2 Opinions: Opinion changes: Whateverthemajorityofmyfriendsthink
What Can Happen? and/or GolesandOlivios 1980
Upper Bound: Goodedge: Friend takesadvisedopinion on nextday Bad edge: Friend does not taketheproposedopinion v
Upper Bound: Goodedge: Friend takesadvisedopinion on nextday Bad edge: Friend does not taketheproposedopinion t t+1 t+2 g g: Nr. ofgoodedges b: Nr. ofbadedges v v b case g > b
Upper Bound: Goodedge: Friend takesadvisedopinion on nextday Bad edge: Friend does not taketheproposedopinion t t+1 t+2 g g: Nr. ofgoodedges b: Nr. ofbadedges v v b case g > b
Upper Bound: Goodedge: Friend takesadvisedopinion on nextday Bad edge: Friend does not taketheproposedopinion t t+1 t+2 g g: Nr. ofgoodedges b: Nr. ofbadedges v v b case g > b
UpperBound: t t+1 t+2 g g: Nr. ofgoodedges b: Nr. ofbadedges v v b case b > g
UpperBound: t t+1 t+2 g g: Nr. ofgoodedges b: Nr. ofbadedges v v b case b > g
UpperBound: t t+1 t+2 g g: Nr. ofgoodedges b: Nr. ofbadedges v v b case b > g
UpperBound: t t+1 t+2 g g g: Nr. ofgoodedges b: Nr. ofbadedges v v b b case b > g
TightBound? LowerboundUpperbound vs.
Let`sVote vs.
E E B B C C
C C B B E E E E B B C C
C B E E E B B C C
C B C B C B E E E B B B E E E C C C
Other Results Iterative model: Adversarypicksnodesinsteadofsynchronousrounds: 1 Step = 1 nodechangeitsopinion
Iterative Model Benevolentalgorithm: θ(n)