1 / 47

ETH Zurich – Distributed Computing – disco.ethz.ch

Convergence in (Social) Influence Networks. Silvio Frischknecht, Barbara Keller, Roger Wattenhofer. ETH Zurich – Distributed Computing – www.disco.ethz.ch. Simple World. 2 Opinions : Opinion changes : Whatever the majority of my friends think. b. b. b. b. b. What Can Happen?.

chacha
Download Presentation

ETH Zurich – Distributed Computing – disco.ethz.ch

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Convergence in (Social) Influence Networks Silvio Frischknecht, Barbara Keller, Roger Wattenhofer ETH Zurich – Distributed Computing – www.disco.ethz.ch

  2. Simple World 2 Opinions: Opinion changes: Whateverthemajorityofmyfriendsthink

  3. b

  4. b

  5. b

  6. b

  7. b

  8. What Can Happen? and/or GolesandOlivios 1980

  9. Easy LowerBound: Ω(n)

  10. Easy LowerBound: Ω(n)

  11. Easy LowerBound: Ω(n)

  12. Easy LowerBound: Ω(n)

  13. Easy LowerBound: Ω(n)

  14. UpperBound: v

  15. UpperBound: v

  16. Upper Bound: v

  17. Upper Bound: Goodedge: Friend takesadvisedopinion on nextday Bad edge: Friend does not taketheproposedopinion v

  18. Upper Bound: Goodedge: Friend takesadvisedopinion on nextday Bad edge: Friend does not taketheproposedopinion t t+1 t+2 g g: Nr. ofgoodedges b: Nr. ofbadedges v v b case g > b

  19. Upper Bound: Goodedge: Friend takesadvisedopinion on nextday Bad edge: Friend does not taketheproposedopinion t t+1 t+2 g g: Nr. ofgoodedges b: Nr. ofbadedges v v b case g > b

  20. Upper Bound: Goodedge: Friend takesadvisedopinion on nextday Bad edge: Friend does not taketheproposedopinion t t+1 t+2 g g: Nr. ofgoodedges b: Nr. ofbadedges v v b case g > b

  21. UpperBound: t t+1 t+2 g g: Nr. ofgoodedges b: Nr. ofbadedges v v b case b > g

  22. UpperBound: t t+1 t+2 g g: Nr. ofgoodedges b: Nr. ofbadedges v v b case b > g

  23. UpperBound: t t+1 t+2 g g: Nr. ofgoodedges b: Nr. ofbadedges v v b case b > g

  24. UpperBound: t t+1 t+2 g g g: Nr. ofgoodedges b: Nr. ofbadedges v v b b case b > g

  25. TightBound? LowerboundUpperbound vs.

  26. Let`sVote vs.

  27. Simpler Example:

  28. Simpler Example:

  29. A Transistor

  30. A Transistor

  31. E E B B C C

  32. C C B B E E E E B B C C

  33. C B E E E B B C C

  34. C B C B C B E E E B B B E E E C C C

  35. Other Results Iterative model: Adversarypicksnodesinsteadofsynchronousrounds: 1 Step = 1 nodechangeitsopinion

  36. Convergence Time: θ(n²)

  37. Iterative Model Benevolentalgorithm: θ(n)

  38. תודה רבה

More Related