120 likes | 235 Views
Data Communications and Computer Networks Chapter 4 CS 3830 Lecture 23. Omar Meqdadi Department of Computer Science and Software Engineering University of Wisconsin-Platteville. 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.4 IP: Internet Protocol Datagram format
E N D
Data Communications and Computer NetworksChapter 4CS 3830 Lecture 23 Omar Meqdadi Department of Computer Science and Software Engineering University of Wisconsin-Platteville
4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.4 IP: Internet Protocol Datagram format IPv4 addressing IPv6 4.5 Routing algorithms Link state Distance Vector Hierarchical routing 4.6 Routing in the Internet RIP OSPF BGP 4.7 Broadcast and multicast routing Chapter 4: Network Layer Network Layer
Internet inter-AS routing: BGP • BGP (Border Gateway Protocol):the de facto standard • BGP provides each AS a means to: • Obtain subnet reachability information from each neighboring AS. • Propagate reachability information to all AS-internal routers. • Determine “good” routes to subnets based on reachability information and policy. • allows subnet to advertise its existence to rest of Internet: “I am here” Network Layer
2c 2b 3c 1b 1d 1c BGP basics • pairs of routers (BGP peers) exchange routing info over semi-permanent TCP connections: BGP sessions • BGP sessions need not correspond to physical links. • when AS2 advertises a prefix to AS1: • AS2 promises it will forward datagrams towards that prefix. eBGP session iBGP session 3a 3b 2a AS3 AS2 1a AS1 Network Layer
BGP messages • BGP messages exchanged using TCP. • BGP messages: • OPEN: opens TCP connection to peer and authenticates sender • UPDATE: advertises new path (or withdraws old) • KEEPALIVE keeps connection alive in absence of UPDATES; also ACKs OPEN request • NOTIFICATION: reports errors in previous msg; also used to close connection Network Layer
2c 2b 3c 1b 1d 1c Distributing reachability info • using eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1. • 1c can then use iBGP do distribute new prefix info to all routers in AS1 • 1b can then re-advertise new reachability info to AS2 over 1b-to-2a eBGP session • when router learns of new prefix, it creates entry for prefix in its forwarding table. eBGP session iBGP session 3a 3b 2a AS3 AS2 1a AS1 Network Layer
Path attributes & BGP routes • advertised prefix includes BGP attributes. • prefix + attributes = “route” • two important attributes: • AS-PATH: contains ASs through which prefix advertisement has passed: e.g, AS 67, AS 17 • NEXT-HOP: indicates specific internal-AS router to next-hop AS. • when gateway router receives route advertisement, uses import policy to accept/decline. Network Layer
BGP route selection • router may learn about more than 1 route to some prefix. Router must select route. • elimination rules: • local preference value attribute: policy decision • shortest AS-PATH • closest NEXT-HOP router: hot potato routing • additional criteria set by network admins Network Layer
legend: provider B network X W A customer network: C Y BGP routing policy • A,B,C are provider networks • X,W,Y are customer (of provider networks) • X is dual-homed: attached to two networks • X does not want to route from B via X to C • .. so X will not advertise to B a route to C Network Layer
legend: provider B network X W A customer network: C Y BGP routing policy (2) • A advertises path AW to B • B advertises path BAW to X • Should B advertise path BAW to C? • No way! B gets no “revenue” for routing CBAW since neither W nor C are B’s customers • B wants to force C to route to w via A • B wants to route only to/from its customers! Network Layer
Why different Intra- and Inter-AS routing ? Policy: • Inter-AS: admin wants control over how its traffic routed, who routes through its net. • Intra-AS: single admin, so no policy decisions needed Scale: • hierarchical routing saves table size, reduced update traffic Performance: • Intra-AS: can focus on performance • Inter-AS: policy may dominate over performance Network Layer