380 likes | 568 Views
Acid-Base balance revisited. 2013, Wynyard Hall. Luciano Gattinoni, MD, FRCP Università di Milano Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milan, Italy. Sodium. Chlorine. Ionic Bond. Sodium Atom 11 p+ 11 e- Net charge = 0. Sodium Ion 11 p+ 10 e-
E N D
Acid-Base balance revisited 2013, Wynyard Hall Luciano Gattinoni, MD, FRCP Università di Milano Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milan, Italy
Ionic Bond Sodium Atom 11 p+ 11 e- Net charge = 0 Sodium Ion 11 p+ 10 e- Net charge = +1 Chlorine Atom 17 p+ 17 e- Net charge = 0 Chloride Ion 17 p+ 18 e- Net charge = -1
Hydrogen Oxygen
Na+ and Cl- ions become surrounded by spheres of H2O molecules Cl- Na+ Na+ Cl- + + + + + + + + + + + H H H H H H H H H H H H H H H H H H H H H H O O O O O O O O O O O - - - - - - - - - - -
Lactic acid Lactate C3 H6 O3 CH3CH(OH)COO−
Pr - Pr Pr H +H+ 1 gr. of PROTEINS may bound 0.11 mEq [H+]
H O O- O- O H C C C O O -O + O C H+ + 2H+ + H H H O O O O CO2 Carbon Dioxide H2CO3 Carbonic Acid HCO3- Bicarbonate CO32- Carbonate CO2 + H2O ßà HCO3- + H+ pKa = 6.10 HCO3-ßà CO3--+ H+ pKa = 8.92
Types of active transport http://www.emc.maricopa.edu/faculty/farabee/biobk/biobooktransp.html
H+ number 1 Na+ number 1000000 : H+ volume 1 : Na+ volume 120
The players Water 55000 mmol/L Strong Ion+ 150 mmol/L Strong Ion- 110 mmol/L Weak acid- 40 mmol/L H+ 0.0000004 mmol/L
The Stewart’s approach The independent variables are: The in Strong Ion difference PCO2 Amount of weak acid (Proteins, Phosphate, Hemoglobin)
[Na+] 142 + - [K+] 4.1 [Ca2+] 4.6 [Mg2+] 1.6 [HCO3-] 24.5 [Alb-] 12.28 [Pi-] 1.82 [XA-] 8 [Cl-] 106 Plasma electroneutrality 150 BB= [HCO3-] +[A-] i.e. the negative charge mEq/L 100 SID=[Na+]+[K+]+[Ca2+]+ [Mg2+]-[Cl-]-[XA-] 50 i.e. BB=SID
Metabolic acidosis: generation Na+ K+ mEq/L Ca++ OH- OH- Cl- 160 Lactate- A- HCO3- 3 OH- HCO3- 140 HCO3- 32 42 A- 120 A- 100 80 Positive charges Negative charges Negative charges
Metabolic acidosis Within the “BB” Na+ K+ mEq/L Ca++ OH- OH- Cl- 160 Lactate- A- HCO3- HCO3- 3 OH- HCO3- 140 32 32 A- A- 120 Hypocapnia 100 80 Positive charges Negative charges Negative charges
Metabolic acidosis Within the “BB” Na+ K+ mEq/L Ca++ OH- OH- Cl- 160 Lactate- A- HCO3- 3 OH- HCO3- HCO3- 140 32 42 A- 120 A- 100 Chloride excretion 80 Positive charges Negative charges Negative charges
Measured and calculated values (mean +/- SD) at the different measuring points. Saline group = white dots; Ringer's group = black dots. Star = intragroup differences, P < 0.05; triangle = intergroup differences, P < 0.05. Infused nearly 4.5-5 L Dilution nearly 30% Initial Vext nearly 15 L Scheingraber: Anesthesiology, 90(5).May 1999.1265-1270
7.55 pH dilution 20% dilution 30% 7.50 dilution 40% 7.45 7.40 7.35 7.30 7.25 baseline 0 10 20 30 40 50 SID (mEq/L) Effects of infusion SID Sterofundin Gelatin RL NS HES Carlesso E. et al. Intensive Care Med. 2011 Mar;37(3):461-8.
Effects of infusion SID (in vitro experimental data PCO2 = 35 mmHg ) 18.3 ± 0.3 HCO3-Baseline Carlesso E. et al. Intensive Care Med. 2011 Mar;37(3):461-8.
PCO2 and water Consider a volume of water equilibrated at different PCO2 values… [HCO3-]x[H+] = Kc [CO2 dissolved] H-H equation [HCO3-] pH = pK + log10 Electroneutrality [CO2 dissolved] [HCO3-]=[H+]
PCO2,water and SID Consider a volume of water equilibrated at different PCO2 values…with a strong ion difference higher than zero… [HCO3-]x[H+] = Kc [CO2 dissolved] H-H equation [HCO3-] pH = pK + log10 Electroneutrality [CO2 dissolved] [HCO3-]=[SID] + [H+]
PCO2 and water SID 20 20 mEq/l 0.08 0.07 SID 15 15 mEq/l 0.06 0.05 SID [HCO3-] (mmol/l) 10 0.04 10 mEq/l 0.03 SID 5 0.02 5 mEq/l 0.01 SID 0.00 0 0 mEq/l 0 20 40 60 80 100 120 140 160 180 200 PCO (mmHg) 2
Effects of infinite dilution in open system (constant PCO2) HCO3- mEq/L pH = pKc + log10 50 α PCO2 40 A- SIDD = HCO3-I 30 HCO3- SID 20 HCO3- SID 10 HCO3- SID 0 pH unmodified pH increase pH decrease SID A- prima
Effects of infusion SID PCO2 = 40 mmHg pH 7.55 SIDdiluent = 50 7.50 SIDdiluent = 40 7.45 SIDdiluent = 30 SIDdiluent = 24.42 7.40 SIDdiluent = 20 7.35 SIDdiluent = 10 7.30 SIDdiluent = 0 7.25 baseline 20 30 40 Dilution (%) Carlesso E. et al. Intensive Care Med. 2011 Mar;37(3):461-8.
Effects of infusion SID (in vitro experimental data) PCO2 = 35 mmHg SIDdiluent = 48 SIDdiluent = 36 SIDdiluent = 24 SIDdiluent = 18 SIDdiluent = 12 SIDdiluent = 0 Baseline Carlesso E. et al. Intensive Care Med. 2011 Mar;37(3):461-8.
Effects of infusion (12 pigs) Langer T. et al. Intensive Care Med. 2012 Jan 25. [Epub ahead of print]
Effects of infusion (12 pigs) Langer T. et al. Intensive Care Med. 2012 Jan 25. [Epub ahead of print]
Effects of infusion (12 pigs) Langer T. et al. Intensive Care Med. 2012 Jan 25. [Epub ahead of print]
Differenttypesofcrystalloidsinfused SID infused ~ 24 mEq/L [n = 13] (“balance” solution) SID infused ~ 30 mEq/L Study population [n = 20] (RIII + SF + RL) SID infused ~ 55 mEq/L [n = 24] (Rehydrating III – SID = 55) Courtesyof Dr. P. Caironi
Variationof BE accordingto HCO3–baselinelevels HCO3– ≤ 23.5 mmol/L HCO3– > 23.5 mmol/L P < 0.01 Delta Base Excess [mmol/L] 8 6 P < 0.01 4 2 0 -2 SID ~ 24 SID ~ 30 SID ~ 55 N = 13 N = 20 N = 24 Courtesyof Dr. P. Caironi
Variationof BE accordingtoinfused SID – baseline HCO3– 7 Delta Base Excess [mmol/L] 6 5 4 3 2 1 P = 0.017 0 < –1 – 1 - 12 12 - 19 > 19 Quartile distribution of SID infused – baseline HCO3– [mEq/L] Courtesyof Dr. P. Caironi
Improvement have been made on safety through more balanced crystalloid solutions To maintain initial pH the infusion SID must be equal to HCO3- The clinical benefit of balanced crystalloid solutions has to be determined. Conclusions