220 likes | 347 Views
Tree Configuration in Bridged IEEE1394 Bus Network . Subrata Banerjee PHILIPS Research Briarcliff. P1394.1 WG Meeting March 19-20, 1998. PHILIPS Research. Problem Statement. Bridges of different capabilities Bandwidth Iso Delay Bridges may introduce unacceptable loops
E N D
Tree Configuration in Bridged IEEE1394 Bus Network Subrata Banerjee PHILIPS Research Briarcliff P1394.1 WG MeetingMarch 19-20, 1998 PHILIPS Research
Problem Statement • Bridges of different capabilities • Bandwidth • Iso Delay • Bridges may introduce unacceptable loops • Path between any two bridges • “Minimum bottleneck” route • Typically bridge capacity lower than bus capacity N1 C1 C2 N2 PHILIPS
Graph Theory Result • Maximum Spanning Tree guaranteesMinimum Bottleneck RouteBetween every pair of nodes • Distributed maximum spanning tree algorithm C1 C2 PHILIPS
How to Choose Between Two Bridges? • Bridge Capability Parameters • Bridge Bandwidth • Bridge Iso_Delay • Bridge Vendor ID = max. of 2 portal vendor IDs • Bridge Node ID = max. of 2 portal vendor IDs • Proposed Organization Resv (3) Bridge BW (13) Iso_delay (8) Resv (8) Chip ID (40) Vendor ID (24) (scrambled) PHILIPS
An Example of Tree Conf. Algorithm (1) 57 57 65 65 52 21 55 62 40 58 27 48 58 27 31 48 38 36 34 38 36 PHILIPS
An Example of Tree Conf. Algorithm (2) 57 • BP Broadcasts 57 BP57 BP55 65 65 52 BP21 BP65 21 55 BP40 BP52 62 40 58 BP62 27 BP31 48 58 27 31 48 BP34 BP48 BP27 BP58 BP38 BP36 38 36 34 38 36 PHILIPS
An Example of Tree Conf. Algorithm (3) 57 • Fragment Roots 57 BP Count=3 BP Count=3 65 65 52 57, L1 21 55 65, L1 62 BP Count=2 40 58 27 48 62, L1 58 27 BP Count=2 31 48 BP Count=4 58, L1 48, L1 38 36 34 38 36 PHILIPS
An Example of Tree Conf. Algorithm (4) 57 • Find Best Neighbor 57 65 65 52 57, L1 21 55 65, L1 62 40 58 27 Submit 48 62, L1 58 27 31 48 58, L1 48, L1 38 36 34 38 36 PHILIPS
An Example of Tree Conf. Algorithm (5) 57 • Join 1 57 65 65 52 57, L1 21 55 65, L1 62 40 58 27 48 62, L1 58 27 31 48 58, L1 48, L1 38 36 34 38 36 PHILIPS
An Example of Tree Conf. Algorithm (6) 57 • Join 1 57 65 65 52 57, L1 21 55 62 40 58 65, L2 27 48 58 27 31 48 58, L1 48, L1 38 36 34 38 36 PHILIPS
An Example of Tree Conf. Algorithm (7) 57 • Find new best neighbor 57 65 65 52 57, L1 21 55 62 40 58 65, L2 27 48 58 27 31 48 58, L1 48, L1 38 36 34 38 36 PHILIPS
An Example of Tree Conf. Algorithm (8) 57 • Join 2 57 65 65 52 57, L1 21 55 62 40 58 65, L2 27 48 58 27 31 48 58, L1 48, L1 38 36 34 38 36 PHILIPS
An Example of Tree Conf. Algorithm (9) 57 • Join 2 57 65 65 52 21 55 62 40 58 65, L2 27 58, L2 48 58 27 31 48 48, L1 38 36 34 38 36 PHILIPS
An Example of Tree Conf. Algorithm (10) 57 • Join 3 57 65 65 52 21 55 62 40 58 65, L2 27 58, L2 48 58 27 31 48 48, L1 38 36 34 38 36 PHILIPS
An Example of Tree Conf. Algorithm (11) 57 • Join 3 57 65 65 52 21 55 62 40 58 65, L3 27 58, L2 48 58 27 31 48 38 36 34 38 36 PHILIPS
An Example of Tree Conf. Algorithm (12) 57 • Join 3 57 65 65 52 21 55 62 40 58 65, L3 27 58, L2 48 58 27 31 48 36 34 38 36 PHILIPS
An Example of Tree Conf. Algorithm (13) 57 • Join 4 57 65 65 52 21 55 62 40 58 27 58, L2 48 58 27 31 48 36 34 38 36 PHILIPS
An Example of Tree Conf. Algorithm (14) 57 • Join 4 57 65 65 52 21 55 62 40 58 48 58 27 31 48 34 38 36 PHILIPS
An Example of Tree Conf. Algorithm (15) 57 • Join 4 57 65 65 52 55 62 40 58 48 58 48 PHILIPS
Rules of the Game • Fragment A can submit to Fragment B iffLevelA LevelB • Bridge Capability values are unique. • No loops possible C1 Lx Lx Lx Ly C1 > C2 > C3 > C1 Lx > Lz > Ly > Lx C2 C3 Lx Lz PHILIPS
Example of Selected Commands • “I am a BP” • data = Unique Bridge Capabilities (UBC) • “Report UBC” • data = best UBC from all children • “Connect” • data = Fragment Level • “Update” • data = Fragment UID, Fragment Level PHILIPS
Once the Tree Topology is Identified ... • Assign • Bus Ids • Routing Bounds • Portal_Control.rte fields • Select Net Cycle Timer • Assign Portal_Control.clk fields • Details? PHILIPS