340 likes | 348 Views
Understand definitions, classifications, characteristics, and types of multimedia in computer networking, including sound, video, image, and text. Discover challenges and technologies of multimedia networking. Explore requirements, classifications, and qualities.
E N D
Computer Networking: A Top Down Approach Featuring the Internet, 3rd edition. Jim Kurose, Keith RossAddison-Wesley, July 2004. Tema 0: Transmisión de Datos Multimedia Clases de aplicaciones multimedia Redes basadas en IP y QoS
What is multimedia? • Definition of multimedia • Hard to find a clear-cut definition • In general, multimedia is an integration of text, graphics, still and moving images, animation, sounds, and any other medium where every type of information can be represented, stored, transmitted and processed digitally • Characteristics of multimedia • Digital – key concept • Integration of multiple media type, usually including video or/and audio • May be interactive or non-interactive
Various Media Types • Text, Graphics, image, video, animation, sound, etc. • Classifications of various media types • Captured vs. synthesized media • Captured media (natural) : information captured from the real world • Example: still image, video, audio • Synthesized media (artificial) : information synthesize by the computer • Example: text, graphics, animation • Discrete vs. continuous media • Discrete media: space-based, media involve the space dimension only • Text, Image, Graphics • Continuous media: time-based, media involves both the space and the time dimension • Video, Sound, Animation
Sound Video Animation Continuous Continuous Graphics Text Image Discrete Discrete Captured From real world Synthesized By computer Classification of Media Type
Text • Plain text • Unformatted • Characters coded in binary form • ASCII code • All characters have the same style and font • Rich text • Formatted • Contains format information besides codes for characters • No predominant standards • Characters of various size, shape and style, e.g. bold, colorful
Plain Text vs. Rich Text An example of Plain text Example of Rich text
Graphics • Revisable document that retains structural information • Consists of objects such as lines, curves, circles, etc • Usually generated by graphic editor of computer programs Example of graphics (FIG file)
Digital still image Computer software Synthesized image Capture and A/D conversion Scanned image Images • 2D matrix consisting of pixels • Pixel—smallest element of resolution of the image • One pixel is represented by a number of bits • Pixel depth– the number of bits available to code the pixel • Have no structural information • Two categories: scanned vs. synthesized still image Camera
Gray-scale image color image Binary image Images (cont.) • Examples of images • Binary image – pixel depth 1 • Gray-scale – pixel depth 8 • Color image – pixel depth 24
Video vs. Animation • Both images and graphics can be displayed as a succession of view which create an impression of movement • Video – moving images or moving pictures • Captured or Synthesized • Consists of a series of bitmap images Each image is called a frame Frame rate: the speed to playback the video (frame per second) • Animation – moving graphics • Generated by computer program (animation authoring tools) • Consists of a set of objects • The movements of the objects are calculated and the view is updated at playback
Sound • 1-D time-based signal • Speech vs. non-speech sound • Speech – supports spoken language and has a semantic content • Non-speech – does not convey semantics in general • Natural vs. structured sound • Natural sound – Recorded/generated sound wave represented as digital signal • Example: Audio in CD, WAV files • Structured sound – Synthesize sound in a symbolic way • Example: MIDI file
Networked Multimedia • Local vs. networked multimedia • Local: storage and presentation of multimedia information in standalone computers • Sample applications: DVD • Networked: involve transmission and distribution of multimedia information on the network • Sample applications: videoconferencing, web video broadcasting, multimedia Email, etc. Image server A scenario of multimedia networking Internet Video server
Consideration of Networked Multimedia • Requirements of multimedia applications on the network • Typically delay sensitive • end-to-end delay • delay jitter: • Jitter is the variability of packet delays within the same packet stream • Quality requirement • Satisfactory quality of media presentation • Synchronization requirement • Continuous requirement (no jerky video/audio) • Can tolerant some degree of information loss • Challenges of multimedia networking • Conflict between media size and bandwidth limit of the network • Conflict between the user requirement of multimedia application and the best-effort network • How to meet different requirements of different users?
Technologies of Multimedia Networking • Media compression – reduce the data volume Address the1st challenge • Image compression • Video compression • Audio compression • Multimedia transmission technology Address the 2nd and 3rd challenges • Protocols for real-time transmission • Rate / congestion control • Error control
Multimedia Networking Systems • Live media transmission system • Capture, compress, and transmit the media on the fly (example?) • Send stored media across the network • Media is pre-compressed and stored at the server. This system delivers the stored media to one or multiple receivers. (example?) • Differences between the two systems • For live media delivery: • Real-time media capture, need hardware support • Real-time compression– speed is important • Compression procedure can be adjusted based on network conditions • For stored media delivery • Offline compression – better compression result is important • Compression can not be adjusted during transmission
Classes of multimedia applications • Streaming stored audio and video • Streaming live audio and video • Real-time interactive audio and video
2. video sent 3. video received, played out at client 1. video recorded network delay streaming: at this time, client playing out early part of video, while server still sending later part of video Streaming Stored Multimedia: What is it? t>0 100% Cumulative data time
Streaming vs. Download of Stored Multimedia Content • Download: Receive entire content before playback begins • High “start-up” delay as media file can be large • ~ 4GB for a 2 hour MPEG II movie • Streaming: Play the media file while it is being received • Reasonable “start-up” delays • Reception Rate >= playback rate. Why?
Streaming Stored Multimedia: Interactivity • VCR-like functionality: client can pause, rewind, FF, push slider bar • 10 sec initial delay OK • 1-2 sec until command effect OK • RTSP often used (more later) timing constraint for still-to-be transmitted data: in time for playout
client video reception constant bit rate video playout at client variable network delay buffered video client playout delay Streaming Multimedia: Client Buffering • Client-side buffering, playout delay compensate for network-added delay, delay jitter constant bit rate video transmission Cumulative data time
Streaming Multimedia: Client Buffering • Client-side buffering, playout delay compensate for network-added delay, delay jitter constant drain rate, d variable fill rate, x(t) buffered video
Interactive, Real-Time Multimedia applications: IP telephony, video conference, distributed interactive worlds • end-end delay requirements: • audio: < 150 msec good, < 400 msec OK • includes application-level (packetization) and network delays • higher delays noticeable, impair interactivity • session initialization • how does callee advertise its IP address, port number, encoding algorithms?
Internet multimedia: simplest approach • audio or video stored in file • files transferred as HTTP object • received in entirety at client • then passed to player audio, video not streamed: • no, “pipelining,” long delays until playout!
Progressive Download • browser GETs metafile • browser launches player, passing metafile • player contacts server • server downloads audio/video to player
Streaming from a streaming server • This architecture allows for non-HTTP protocol between server and media player • Can also use UDP instead of TCP.
Multimedia Over Today’s Internet • TCP/UDP/IP: “best-effort service” • no guarantees on delay, loss • But multimedia apps requires QoS and level of performance to be effective! • Today’s Internet multimedia applications use application-level techniques to mitigate (as best possible) effects of delay, loss
Streaming Multimedia: UDP or TCP? UDP • server sends at rate appropriate for client (oblivious to network congestion!) • often send rate = encoding rate = constant rate • then, fill rate = constant rate - packet loss • short playout delay (2-5 seconds) to compensate for network delay jitter • error recover: time permitting TCP • send at maximum possible rate under TCP • fill rate fluctuates due to TCP congestion control • larger playout delay: smooth TCP delivery rate • HTTP/TCP passes more easily through firewalls
QoS network provides application with level of performance needed for application to function. Multimedia, Quality of Service: What is it? Multimedia applications: network audio and video (“continuous media”)
Improving QOS in IP Networks • Thus far: “making the best of best effort” • Future: next generation Internet with QoS guarantees • RSVP: signaling for resource reservations • Differentiated Services: differential guarantees • Integrated Services: firm guarantees • simple model for sharing and congestion studies:
Principles for QOS Guarantees • Example: 1Mbps IPphone, FTP share 1.5 Mbps link. • bursts of FTP can congest router, cause audio loss • want to give priority to audio over FTP Principle 1 packet marking needed for router to distinguish between different classes; and new router policy to treat packets accordingly
Principles for QOS Guarantees (more) • what if applications misbehave (audio sends higher than declared rate) • policing: force source adherence to bandwidth allocations • marking and policing at network edge: • similar to ATM UNI (User Network Interface) Principle 2 provide protection (isolation) for one class from others
Principles for QOS Guarantees (more) • Allocating fixed (non-sharable) bandwidth to flow: inefficient use of bandwidth if flows doesn’t use its allocation Principle 3 While providing isolation, it is desirable to use resources as efficiently as possible
Principles for QOS Guarantees (more) • Basic fact of life: can not support traffic demands beyond link capacity Principle 4 Call Admission: flow declares its needs, network may block call (e.g., busy signal) if it cannot meet needs