1 / 44

http: // oberon.roma1fn.it / boomerang http: // physics.ucsb / ~boom

http: // oberon.roma1.infn.it / boomerang http: // www.physics.ucsb.edu / ~boom. The image of the CMB. Mapping the CMB is very important, since the properties of the image of the CMB are determined by: The physical processes happening in the early Universe

chars
Download Presentation

http: // oberon.roma1fn.it / boomerang http: // physics.ucsb / ~boom

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. http: // oberon.roma1.infn.it / boomerang http: // www.physics.ucsb.edu / ~boom

  2. The image of the CMB • Mapping the CMB is very important, since the properties of the image of the CMB are determined by: • The physical processes happening in the early Universe • The large scale geometry of the Universe • The expansion history of the Universe

  3. Long Duration Balloon Flights William Field, McMurdo, Ross-Sea 167o 5.76’E ; 77o 51.76’ S • NASA-National Scientific Balloons Facility (based in Palestine-Texas), provides circum-Antarctic long-duration balloon flights during the Antarctic summer. 37 km for 7-14 days. • This enables long integrations, wide sky coverage and extensive tests for systematic effects, through the repetition of measurements under different experimental conditions: • Different locations: control ground spillover • Different day: control Sun in the far sidelobes • “day” vs “night”observations have different scan directions on the same area, producing crosslinked maps.

  4. The launch: Dec. 29, 1998

  5. The launch: Dec. 29, 1998

  6. CMB anisotropy results:images of the early Universe

  7. The sky scan • The image of the sky is obtained by slowly scanning in azimuth (+30o) at constant elevation • The optimal scan speed is between 1 and 2 deg/s in azimuth • The scan center constantly tracks the azimuth of the lowest foreground region • Every day we obtain a fully crosslinked map.

  8. BOOMERanG: the MAP • 1998: BOOMERanG mapped the temperature fluctuations of the CMB at sub-horizon scales (<1O). • The signal was well above the noise: 2 indep. det. at 150 GHz

  9. The next BIG step: CMB polarization measurementsVelocity fields in the early Universe

  10. The Polarization-sensitive BOOMERanG: B2K • BOOMERanG can give an important contribution to CMB polarization research • We have modified the focal plane after the anisotropy flight of 1998 to accomodate Polarization Sensitive Bolometers (PSB). • We have flown the instrument in Jan. 2003 to detect E-modes • We plan to fly it again to detect E and B modes polarization of the foreground from ISD at high galactic latitudes.

  11. 06/01/2003

  12. BOOM03 Flight Launched: January 6, 2003 From: McMurdo Station, Antarctica 11.7 days of good data

  13. Measurements OK for 11.6 days

  14. BOOMERanG landed near Dome Fuji (h=3700m) after 14 days of flight. The data have been recovered immediately . The payload has been recovered in Jan 2004.

  15. BOOMERANG / B2K Polarization measurements Preliminary results

  16. Optimal CMB anoisotropy maps obtained with IGLS, the Rome pipeline (Natoli et al. 2001). The anisotropy signal is much larger than the instrument noise. This is the CMB map with highest S/N ever. For the polarization signal the problem is harder.

  17. Shallow region: polarization signal smaller than the noise Deep region: polarization signal similar to the noise Rods show measured polarization (signal + noise)

  18. Next BOOMERANG: B2K5 • We plan to re-fly B2K with an upgraded focal plane, to go after foreground cirrus dust polarization. • This information is essential for all the planned B-modes experiments (e.g. BICEP, Dome-C etc.) and is very difficult to measure from ground. • The BOOMERanG optics can host an array of >100 PSB at >350 GHz.

  19. 30’ 30’ 30’ B2K 16 detectors 30’ B2K5 128 detectors

  20. Higher resolution images of the early UniverseShading light on the dark agesOLIMPO

  21. (http://oberon.roma1.infn.it/olimpo) OLIMPO An arcmin-resolution survey of the sky at mm and sub-mm wavelengths Silvia Masi Dipartimento di Fisica La Sapienza, Roma and the OLIMPO team

  22. CMB anisotropy SZ clusters Galaxies 150 GHz 220 GHz 340 GHz 540 GHz 30’ mm-wave sky vs OLIMPO arrays

  23. Olimpo: list of Science Goals • Sunyaev-Zeldovich effect • Measurement of Ho from rich clusters • Cluster counts and detection of early clusters -> parameters (L) • Distant Galaxies – Far IR background • Anisotropy of the FIRB • Cosmic star formation history • CMB anisotropy at high multipoles • The damping tail in the power spectrum • Complement interferometers at high frequency • Cold dust in the ISM • Pre-stellar objects • Temperature of the Cirrus / Diffuse component

  24. (http://oberon.roma1.infn.it/olimpo) OLIMPO Test flight from Trapani (Italy) (July 2005) Long Duration Balloon flight from polar regions (Peterzen et al. ESA Symposium 2003 – St. Gallen)

  25. Svalbard LDB tests Test launch July 24, 2004 Feasibility of LDB flight from Svalbard proven More than 40 days at float IRIDIUM telemetry module for OLIMPO succesfully tested Solar panels/charge control tested Forecasted OLIMPO LDB scientific balloon flight in Summer 2006

  26. BOOMERANG launch movie (10 min.) Click on the black frame to start

  27. Possible Synergies on LDBs • Technical subsystems: • Attitude control (ACS) and reconstruction • Power control (solar panels for daylight flights: experience with BOOM and OLIMPO) • Telemetry (Iridium-based global telemetry for moderate data rates: experience with Pegaso – G.Romeo, 2400 bps; new parallel system for higher throughput under development for OLIMPO) • Stratospheric background radiance from • Archeops star sensor data • B2K star camera data • Models

  28. Il Sistema di Puntamento Se il puntamento non è preciso, la foto viene sfuocata: si perdono le informazioni a piccola scala Errore introdotto da un pendolamento della gondola E. Pascale, Nov.2000

  29. Attitude Control System (ACS) La ricostruzione della linea di vista entro 1 arc-min rms Sensori di posizione Scansioni in azimut a velocità costante Massimizzare la copertura di cielo Boomerang ha un beam di ~10 minuti d’arco. L’ACS deve garantire: • Controllare effetti sistematici: • Gradienti di temp. sulle strutture • Residuo atmosferico Hardware di puntamento Minimizzare i pendolamenti per ridurre il segnale indotto dalla modulazione dell’atmosfera Pendulation Damper (UCB) E. Pascale, Nov.2000

  30. Connette la Gondola al Pallone Scansioni in azimut tramite la torsione Sulla catena di volo e la rotazione di una Ruota di inerzia Il Pivot Movimento di elevazione: Inner frame ruotato Tramite un attuatore lineare E. Pascale, A. Boscaleri, Nov.2000 Ava Hristov

  31. I sensori di posizione BOMERanG conta un volo di test, notturno, nel 1997 e quello ANTARTICO, diurno, del ’98 Ci vogliono quindi due serie di sensori Puntamento in Elevazione: Encoder assoluto ottico a 16bit (20 Arc sec) Puntamento in Azimut (1) – IROE (2) – “La Sapienza” (3) – Caltech (4) - ING

  32. Il Controllo Un sistema completamente digitale permette grande versatilità Raggi Cosmici possono indurre errori nell’elettronica • Due CPU 386 ridondanti: • acquisiscono i sensori • controllano i motori (controller PWM) Un Watch Dog in pochi ms commuta il controllo fra le due CPU nel caso una fosse ferma per un evento da CR Interfaccia comandi tdress – gondola Elettronica di potenza motori E. Pascale, A. Boscaleri Nov. 2000

  33. BOOMERanG Scan Strategy Esploriamo il cielo con scansioni lineari in azimut tutto l’esperimento è ruotato d i +30°, 1 o 2°/s. Il centro della scansione traccia l’azimuth a minore foreground Abbiamo una sovrapposi-zione ottimale sulla regione di cielo osservata P.de Bernardis Oct.2000

  34. Performance Volo di test: La telecamera stellare fornisce la posizione della navicella negli angoli di azimut, elevazione e rollio entro 2 ar-min rms a 5 Hz Su questa vengono integrati i tre giroscopi per la rimozione degli offset Attitude reconstruction: migliore di 0.5 arc-min rms Volo Anntartico: Il Sensore Solare provvede un misura precisa e ripetibile di azimut ed elevazione della navicella, tuttavia il segnale è difficile da calibrare essendo dipendente sia dall’azimut che dall’elevazione del Sole (accuratezza ~6 arc-min rms) Per questo si integrano i tre giroscopi sul SS. Il Giroscopio di roll fornisce il rollio ignoto al SS Attitude reconstruction: migliore di 3 arc-min rms E. Pascale, Nov. 2000

  35. Archeops Star Sensor • A linear array of 46 photodiodes in the focus of a 40cm f/5 telescope. • Heavily baffled. • Red filter to maximize stars to atmosphere ratio. • Attitude reconstruction: better than 1 arcmin. • See Nati et al. RSI 74, 4169, 2003.

  36. The polar-night flight of Archeops

  37. Stars Great night-time performance: 1300 stars/circle

  38. During the Trapani flight we got also day-time data: Poor day-time performance: payload reflections and large-scale atmospheric diffusion of sun light. (stars are around ten ADU !)

  39. Scattered sunlight one azimuth rotation Poor day-time performance: payload reflections and large-scale atmospheric diffusion of sun light. (stars are around ten ADU !)

More Related