90 likes | 222 Views
An Information System for Material Microstructures. What can CS/DB do for material sciences. Kathrin Roberts, Karlsruhe Univ. Frank Mücklich, Saarland Univ., Material Sciences Ralf Schenkel , Gerhard Weikum, MPI Informatik. Motivation. Class of this iron?. A. B. C. D. E.
E N D
An Information System for Material Microstructures What can CS/DB do for material sciences Kathrin Roberts, Karlsruhe Univ. Frank Mücklich, Saarland Univ., Material Sciences Ralf Schenkel, Gerhard Weikum, MPI Informatik
Motivation Class of this iron? A B C D E • Material properties depend on microstructure of the material • Microscopic images • 5 classes of cast iron(EN ISO 945:1994) Human experts needed!
System Architecture PID Java-Servlet Image Preprocessing Feature Extraction Classification (SVM) Oracle DB
Some Details on SVM d Mindestabstand X2 + + d - + d - + + d - - - X1 Represent training data by feature vectors Build separating hyperplane Classification by computing distance to hyperplane One SVM per class
Feature Vectors 90° 45° 135° 6 7 8 5 1 0° 4 3 2 • 14 Haralick Parameters [Haralick73]Statistics on black-white-transitions x
Feature Vectors • 6 Stereologic Parameters [Mücklich00]Statistics about connected areas of black pixels
Preliminary Experimental Results • 350 pre-classified images of cast iron • leave-one-out evaluation
Sensitivity Analysis Find features with most influence on classification Greedy algorithm: • Drop the feature with least influence on precision • Repeat until precision gets too low
Conclusion & Future Work • Fully functional system for classifying microstructures of cast iron • Users like it! • Extend feature set • Partition images with more than one class • Extend to other types of material • Continue collaboration with material scientists