410 likes | 559 Views
Background in Biogeochemistry. Some aspects of element composition and behavior are illustrated in Table 1. The major elements include Si, C, Al and Ca. Most of the major elements are largely found in the lithosphere and exhibit long residence times in this pool.
E N D
Background in Biogeochemistry Some aspects of element composition and behavior are illustrated in Table 1. The major elements include Si, C, Al and Ca. Most of the major elements are largely found in the lithosphere and exhibit long residence times in this pool. T = pool/mass input or mass output For some elements, a significant fraction of the mass is found in the oceans (Na+, Cl-, S). For the most part, the atmosphere and biosphere are minor element pools.
Background in Biogeochemistry (cont.) Only for N is the atmosphere a significant pool. Some elements exhibit more than one oxidation state and therefore can participate in redox (oxidation-reduction) reactions (e.g. C, Fe, S, N, O).
Acid-Base Chemistry Major ionic solutes Cations Basic - Ca2+, Mg2+, K+, Na+ largely derived from cation supply in the lithosphere Acidic - H+, Al3+, Fe3+ occurs under acidic conditions Reduced - Fe2+, Mn2+ occurs under reducing conditions (sediments, wetlands)
Acid-Base Chemistry (cont.) Anions Strong acid anions - SO42-. NO3-. Cl- Weak acid anions - HCO3-, CO32-, An- (organic anions) Basic - OH- CB - sum of basic cations = 2[Ca2+] + 2[Mg2+] + [Na+] + [K+] CA - sum of strong acid anions = 2[SO42-] + [NO3-] + [Cl-]
Acid-Base Chemistry (cont.) Dissolved inorganic carbon (DIC) = CT [H2CO3*] + [HCO3-] + [CO32-] The distribution of inorganic carbon species is a function of pH (see figure). H2CO3* = H+ + HCO3- ; pKa1 = 6.3 HCO3- = H+ + CO32- ; pKa2 = 10.3
Acid-Base Chemistry (cont.) An important measurement of the acid-base status of waters is acid neutralizing capacity or alkalinity. ANC = [HCO3-] + 2[CO32-] + n[An-] + [OH-] - [H+] = the ability of a system to neutralize inputs of strong acid. HCO3- + H+ = H2CO3* CO32- + 2H+ = H2CO3 OH- + H+ = H2O ANC = CB - CA
Acid-Base Chemistry (cont.) An important concept is electroneutrality. All solutions (and systems) must be electrically neutral. ci - concentration of ionic solute zi - charge 2[Ca2+] + 2[Mg2+] + [Na+] + [K+] + [H+] = 2[SO42-] + [NO3-] + [Cl-] + [HCO3-] + 2[CO32-] + n[An-] + [OH-] Rearranging ANC= [HCO3-] + 2[CO32-] + n[An-] + [OH-] - [H+] = 2[Ca2+] + 2[Mg2+] + [Na+] + [K+] - 2[SO42-] - [NO3-] - [Cl-] = CB - CA
Acid-Base Chemistry (cont.) Increases in Ca2+ by weathering of minerals increases ANC. CaCO3 + H+ = Ca2+ + HCO3- Inputs of H2SO4 from acid rain decreases ANC. H2SO4 = 2H+ + SO42- Any process which affects the concentration of ionic solutes changes ANC. There is a non-linear relationship between ANC and pH (see figure). e.g. ANC production is an important indicator of the abiotic fixation or removal of CO2.
Acid-Base Chemistry (cont.) Weathering is an important process by which CO2 is fixed from the atmosphere. NaAlSi3O8(s) + H2O + CO2 = Na+ + HCO3- + Al(OH)3(s) + 3H4SiO4 (albite) This HCO3- is transported by rivers to the oceans. A budget for bicarbonate of the ocean is shown in Table 2 (from Berner and Berner).
Table 2. The Oceanic Bicarbonate Budget (rates in Tg HCO3-/yr) Note: Tg = 1012g. Replacement time for HCO3 (river input only) is 83,000 years.
Acid-Base Chemistry (cont.) There are two budgets presented. The first is the current budget. The second is the budget over the past 25 MY. Note that the major inputs of HCO3- are riverine inputs and biogenic pyrite formation (see figure). About 7% of the total HCO3- inputs is associated with SO42- reduction. 2CH2O + SO42- = H2S + 2HCO3-
Organic S Compounds Organic Matter Bacteria H2S Dissolved SO42- Bacteria Iron Minerals Pyrite FeS2
Acid-Base Chemistry (cont.) The sink of HCO3- inputs to the oceans is precipitation of CaCO3. Ocean water is not oversaturated with respect to the solubility of CaCO3 over the entire depth. The upper waters are oversaturated while the lower waters are undersaturated. The reason for this pattern is that the solubility of CaCO3 increases with increasing depth due to increases in pressure (see figure). At the average ocean depth, the pressure is 400 atm. Under these conditions, CaCO3 is about twice as soluble as at the surface.
Acid-Base Chemistry (cont.) Also, the production of CO2 from respiration of organic matter facilitates the dissolution of CaCO3. About 83% of the precipitated CaCO3 redissolves at depth. CO2 + H2O + CaCO3 = Ca2+ + HCO3- Note that the current ocean is not at steady-state with respect to inputs of HCO3-. Over the short-term, HCO3- is being depleted, sediment deposition exceeds inputs. At the current rate of deposition, all of the HCO3- in the ocean would be removed in 200,000 yr. This condition would never exist, as the ocean would eventually become undersaturated with respect to the solubility of CaCO3 and precipitation would stop.
Acid-Base Chemistry (cont.) The condition of elevated CaCO3 deposition to sediments has only been occurring during the past 11,000 yr. This condition is due to the rapid post-glacial rise of sea level over the continent of shelves.
over saturation under saturation
Redox Chemistry Redox reactions involve the transfer of electrons. All redox reactions must be coupled and require an electron donor and electron acceptor. e.g. CH2O + H2O = CO2 + 4e- + 4H+ O2 + 4e- + 4H+ = 2H2O CH2O + O2 = CO2 + H2O Redox reactions are often characterized in stoichiometric half reactions. e.g. Fe3+ + e- = Fe2+
Redox Chemistry (cont.) This reaction can be written as a mass law. where K is a thermodynamic equilibrium constant. If we take the logarithm of this expression. or pe = - log[e-] and is the indicator of the redox status of the system. oxidizing conditions - high positive pe values reducing conditions - low or negative pe values
Redox Chemistry (cont.) Only a few elements dominate redox reactions in natural waters. Major redox elements - C, N, O, S, Fe, Mn The most important electron donor in natural waters is organic matter. The electron acceptor that is coupled with the electron donor (organic matter) is variable. It depends on the quantity and energetics of the electron acceptor. Redox reactions in the natural environment can be thought of as an electron titration. The source of electrons is the electron donor (organic matter). These electrons are released to electron acceptors in order of their electron affinity or energetics.
Redox Chemistry (cont.) The energy yield of these electron acceptor reactions decreases. So, O2 is the preferred electron acceptor. When O2 is consumed, electrons are transferred to NO3- and so on. Note that when the electron acceptor O2 is in excess, conditions are aerobic (i.e. Earth's surface). When the quantity of electron donor (organic matter) exceeds the quantity of electron acceptor (O2), then anaerobic conditions result. These conditions occur in wetlands or in lake sediments.
Redox Chemistry (cont.) See figure of the natural electron cycle. If photosynthetic products were oxidized completely by respiration, the atmosphere would be devoid of O2. There is a loss of reduced species CH2O and FeS, which represents a new loss of bound electrons. This coincides with a net yield of oxidant O2 to the atmosphere. The electron cycle is responsible for the partitioning of an oxidizing atmosphere and reducing lithosphere.
Methods Water Column Monitoring – 1981, 1989, 1990, 1991, 2000 O2 NO3- NH4+ SO42- (H2S)T Fe2+ CH4 Alkalinity pH DIC – calculated from alkalinity, pH, temperature Sediment Traps – 10m – 1989, 1990, 1991 POC
Rates of Solute Accumulation (+) or Loss (-) in the Hypolimnion of Onondaga Lake * Includes ebullitive loss, assumed to be 33% of total; soluble component in parentheses.
Oxygen Reduction DIC Equivalents per Mole O2: -1 (CH2O)106(NH3)16H3PO4 + 106 O2 106 CO2 + 16 NH3 + H3PO4 + 106 H2O Denitrification DIC Equivalents per Mole NO3-: -1.25 (CH2O)106(NH3)16H3PO4 + 84.9 HNO3 106 CO2 + 16 NH3 + H3PO4 + 42.4 N2 + 148.4 H2O Manganese Reduction DIC Equivalents per Mole MN: 0.5 (CH2O)106(NH3)16H3PO4 + 212 MnO2 + 424 H+ 106 CO2 + 16 NH3 + H3PO4 + 212 Mn2+ + 318 H2O Iron Reduction DIC Equivalents per Mole Fe2+: 0.25 (CH2O)106(NH3)16H3PO4 + 424 FeOOH + 848 H+ 106 CO2 + 16 NH3 + H3PO4 + 424 Fe2+ + 742 H2O Sulfate Reduction DIC Equivalents per Mole H2S: -2 (CH2O)106(NH3)16H3PO4 + 53 SO42- 106 CO2 + 16 NH3 + H3PO4 + 53 S- + 106 H2O Iron & Sulfate Reduction DIC Equivalents per Mole SO42-: -2.25 (CH2O)106(NH3)16H3PO4 + 47.1 FeOOH + 47.1 SO42- + 94.2 H+ 106 CO2 + 16 NH3 + H3PO4 + 47.1 FeS + 176.6 H2O Methanogenesis DIC Equivalents per Mole CH4: 1 (CH2O)106(NH3)16H3PO4 53 CO2 + 16 NH3 + H3PO4 + 53 CH4 Fermentation DIC Equivalents per Mole C: 0.5 (CH2O)106(NH3)16H3PO4 35.3 CO2 + 16 NH3 + H3PO4 + 35.3 C2H5OH Humification DIC Equivalents per Mole C: 0.5 (CH2O)106(NH3)16H3PO4 35.3 CO2 + ( C2H5OH)35.3 (NH3)16 H3PO4
Comparison of Hypolimnetic Electron Budgets During Summer Stratification