1.05k likes | 1.56k Views
2009 Lecture Side. January 2009. Lecture by. Design of Control System in State Space. Chapter Twelve week3. Control Engineering. Introduction.
E N D
2009 Lecture Side January 2009 Lecture by Design of Control System in State Space Chapter Twelve week3 Control Engineering
Introduction This Chapter we will learn about state-space design methods based on the pole-placement method and the quadratic optimal regulator method. Control Engineering 2009 Subject Name Automotive Automatic Control
Review First Order: Control Engineering 2009 Subject Name Automotive Automatic Control
Review Second Order: Back to review Chapter4 Transient Response Analysis( Ogata Book ) Control Engineering 2009 Subject Name Automotive Automatic Control
Pole Placement Pole Placement ( วิธีการวางโพล ) คือ ตั้งข้อกำหนดสำหรับตำแหน่งโพลทั้งหมดของระบบวงปิด และออกแบบตัวควบคุมที่จะได้ตำแหน่งโพลตามข้อกำหนดนั้น เงื่อนไขจำเป็นของระบบหรือพลานต์ที่ทำให้สามารถทำการเคลื่อนย้ายโพลทั้งหมดไปยังตำแหน่งที่ต้องการได้ ในการออกแบบทั่วไปจะไม่ได้ต้องการให้ระบบมีเสถียรภาพอย่างเดียว แต่ยังต้องการสมรรถนะหรือผลตอบสนองตามต้องการด้วย ดังนั้นการกำหนดตำแหน่งของโพลระบบวงปิดจึงมิใช่เพียงแต่ว่าต้องการอยู่บนด้านซ้ายของระนาบเชิงซ้อนเท่านั้น แต่อาจจะต้องอยู่ในพื้นที่ที่จะให้ผลตอบสนองที่ดีด้วย เช่น ถ้าตำแหน่งโพลอยู่ใกล้แกนจินตภาพมากเกินไป ผลตอบสนองจะมีลักษณะแกว่ง ในระบบอันดัล n ทั่ว ๆ ไป ความสัมพันธ์ผลตอบสนองทางเวลาของระบบกับตำแหน่งของโพล มักมีความซับซ้อน จึงเป็นการยากที่จะกำหนดตำแหน่งโพลเพื่อให้ได้ผลตอบสนองที่ดี ดังนั้นวิธีการออกแบบนี้โดยทั่วไปอาศัยหลักการของระบบที่มีลักษณะเด่นเป็นอันดับสอง Control Engineering 2009 Subject Name Automotive Automatic Control
Design By Pole Placement Control Engineering 2009 Subject Name Automotive Automatic Control
Design By Pole Placement (a) Open-loop control system; (b) Closed-loop control sysytem Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Design By Pole Placement Control signal The Solution is Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Determination of Matrix K using Transformation Matrix T. ai are coefficients of the characteristic polynomial Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Determination of Matrix K using Transformation Matrix T. (2) where Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Determination of Matrix K using Transformation Matrix T. (3) Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Determination of Matrix K using Transformation Matrix T. (4) Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Determination of Matrix K using Transformation Matrix T. (5) Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Summary to Find Matrix K Using Transformation Matrix T Step1: Check the controllability condition Step2: From the characteristic polynomial for matrix A Step3: Determine the transformation Matrix T Step4: Using the desired eigenvalues Final Step : Calculate K from Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Example Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Example Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Determination of Matrix K Using Direct Substitution Method. Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Example Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Determination of Matrix K Using Ackerman’s Formula. Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Determination of Matrix K Using Ackerman’s Formula. (2) Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Determination of Matrix K Using Ackerman’s Formula. (3) Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Determination of Matrix K Using Ackerman’s Formula. (4) Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Example Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Solving Pole-Placement Problems with MATLAB Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Ackermann’s Formula Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Ackermann’s Formula Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Ackermann’s Formula Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
MATLAB Program (Produce The Feedback Gain Matrix K by Using Ackermann’s Formula) Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
MATLAB Program (Produce The Feedback Gain Matrix K by Using Ackermann’s Formula) Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
MATLAB Program (Produce The Feedback Gain Matrix K by Using Ackermann’s Formula) Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
MATLAB Program (Produce The Feedback Gain Matrix K by Using Ackermann’s Formula) Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Design of Regulator-type Systems by Pole Placement Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Mathematical Modeling Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Mathematical Modeling We assume that the moment of inertia of the pendulum about its center of gravity is zero Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Mathematical Modeling Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Mathematical Modeling Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Mathematical Modeling Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Mathematical Modeling Define state variables Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Mathematical Modeling Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Mathematical Modeling Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Mathematical Modeling In terms of vector-matrix equations. Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Mathematical Modeling By substituting the given numerical values Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2
Mathematical Modeling Control Engineering 2009 Subject Name Automotive Automatic Control Month 200X Page 2