1 / 44

Aim: How can we use the parallelogram method of adding vectors?

Aim: How can we use the parallelogram method of adding vectors?. Do Now: Find the resultant of the following vectors through graphical means: 90 m/s South 150 m/s East Scale: 1 cm = 30 m/s. N. W. E. S. N. W. E. S. N. W. E. S. N. W. E. 90 m/s. S. N. W. E. 90 m/s. S.

chava
Download Presentation

Aim: How can we use the parallelogram method of adding vectors?

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Aim: How can we use the parallelogram method of adding vectors? Do Now: Find the resultant of the following vectors through graphical means: 90 m/s South 150 m/s East Scale: 1 cm = 30 m/s

  2. N W E S

  3. N W E S

  4. N W E S

  5. N W E 90 m/s S

  6. N W E 90 m/s S

  7. N W E 90 m/s S

  8. N 150 m/s W E 90 m/s S

  9. N 150 m/s W E 90 m/s S

  10. N 150 m/s W E 90 m/s S

  11. N 150 m/s W E 90 m/s S

  12. N 150 m/s W E 90 m/s S

  13. N 150 m/s W E 90 m/s 5.8 cm x 30 S

  14. N 150 m/s W E 90 m/s 174 m/s S

  15. N 150 m/s W E 90 m/s 174 m/s S

  16. N 150 m/s W E 90 m/s 174 m/s 31° South of East S

  17. N 150 m/s W E 90 m/s Now solve for the resultant mathematically S

  18. N 150 m/s W E 90 m/s (90 m/s)2 + (150 m/s)2 = R2 174.9 m/s = R S

  19. Two people pull on ropes attached to a box – one with a force of 350 N 35° West of South and one with a force of 420 N 45° South of East. Determine the resultant force on the box. Scale: 1 cm = 70 N

  20. N W E S

  21. N W E S

  22. N W E S

  23. N W E S

  24. N W E 35° 350 N S

  25. N W E 35° 350 N S

  26. N W E 35° 350 N S

  27. N W E 35° 350 N S

  28. N W E 45° 35° 420 N 350 N S

  29. N W E 45° 35° 420 N 350 N S

  30. N W E 45° 35° 420 N 350 N S

  31. N W E 45° 35° 420 N 350 N S

  32. N W E 45° 35° 420 N 350 N S

  33. N W E 45° 35° 420 N 350 N S

  34. N W E 45° 35° 420 N 350 N S

  35. N W E 45° 35° 420 N 350 N S

  36. N W E 45° 35° 420 N 350 N S

  37. N W E 45° 35° 420 N 350 N Resultant S

  38. N W E 45° 35° 420 N 350 N Resultant S

  39. N W E 45° 35° 420 N 350 N 8.4 cm x 70 = 588 N Resultant S

  40. N W E 45° 35° 420 N 350 N 588 N Resultant S

  41. N W E 45° 35° 420 N 350 N 588 N 80° South of East Resultant S

  42. N W E 45° 35° 420 N 350 N 588 N 80° South of East Resultant S

  43. N W E 45° 35° θ 420 N 350 N • Now Solve for the magnitude mathematically • Use a derivation of the law of cosines • R2 = a2 + b2 + 2abcosθ • Where θ is the angle between the 2 vectors S

  44. N W E 45° 35° 420 N 350 N R2 = a2 + b2 + 2abcosθ R2 = (350 N)2 + (420 N)2 + 2(350 N)(420 N)cos80 R = 591.6 N S

More Related