1 / 63

Relaxations and Moves for MAP Estimation in MRFs

S T A N F O R D. Relaxations and Moves for MAP Estimation in MRFs. M. Pawan Kumar. Vladimir Kolmogorov. Philip Torr. Daphne Koller. Our Problem. 0. 6. 1. 3. 2. 0. 4. Label l 2. 1. 2. 4. 1. 1. 3. Label l 1. 1. 0. 5. 0. 3. 7. 2. v 1. v 2. v 3. v 4.

chelsey
Download Presentation

Relaxations and Moves for MAP Estimation in MRFs

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. S T A N F O R D Relaxations and Moves forMAP Estimation in MRFs M. Pawan Kumar Vladimir Kolmogorov Philip Torr Daphne Koller

  2. Our Problem 0 6 1 3 2 0 4 Label l2 1 2 4 1 1 3 Label l1 1 0 5 0 3 7 2 v1 v2 v3 v4 Random Variables V = {v1, ... ,v4} Label Set L = {l1, l2} Labeling f: V  L (shown in red)

  3. Our Problem 0 6 1 3 2 0 4 Label l2 1 2 4 1 1 3 Label l1 1 0 5 0 3 7 2 v1 v2 v3 v4 Random Variables V = {v1, ... ,v4} Label Set L = {l1, l2} Labeling f: V  L (shown in red) Energy of Labeling E(f) = 13 (shown in green)

  4. Our Problem 0 6 1 3 2 0 4 Label l2 1 2 4 1 1 3 Label l1 1 0 5 0 3 7 2 v1 v2 v3 v4 Find f* = argminf E(f) Arbitrary topology, discrete label set, potentials (NP-hard) Pairwise energy function: unary and pairwise potentials (still NP-hard)

  5. Outline • Convex Relaxations • Integer Programming Formulation • LP Relaxation • SDP Relaxation • SOCP Relaxation • Comparing Relaxations • Move Making Algorithms • Some Interesting Open Problems

  6. Cost of v1 = 2 Cost of v1 = 1 Integer Programming Formulation 2 0 4 Unary Potentials Label l2 1 3 Label l1 5 0 2 v1 v2 Labeling f shown in red ; 2 4 ] 2 Unary Potential u = [ 5

  7. v1= 2 v1 1 Integer Programming Formulation 2 0 4 Unary Potentials Label l2 1 3 Label l1 5 0 2 v1 v2 Labeling f shown in red ; 2 4 ] 2 Unary Potential u = [ 5 Label vector x = [ -1 1 ; 1 -1 ]T Recall that the aim is to find the optimal x

  8. Integer Programming Formulation 2 0 4 Unary Potentials Label l2 1 3 Label l1 5 0 2 v1 v2 Labeling f shown in red ; 2 4 ] 2 Unary Potential u = [ 5 Label vector x = [ -1 1 ; 1 -1 ]T 1 Sum of Unary Potentials = ∑iui (1 + xi) 2

  9. Pairwise Potential P Cost of v1 = 1 and v1 = 1 0 Cost of v1 = 1 and v2 = 1 0 0 1 0 Cost of v1 = 1 and v2 = 2 0 1 0 0 3 0 0 0 Integer Programming Formulation 2 0 4 Pairwise Potentials Label l2 1 3 Label l1 5 0 2 v1 v2 Labeling f shown in red 0 3 0

  10. Pairwise Potential P 0 0 0 1 0 0 1 0 0 3 0 0 0 Integer Programming Formulation 2 0 4 Pairwise Potentials Label l2 1 3 Label l1 5 0 2 v1 v2 Labeling f shown in red Sum of Pairwise Potentials 1 ∑ijPij (1 + xi)(1+xj) 0 3 0 4

  11. Pairwise Potential P 0 0 0 1 0 1 = ∑ijPij (1 + xi + xj + Xij) 4 0 1 0 0 3 0 0 0 Integer Programming Formulation 2 0 4 Pairwise Potentials Label l2 1 3 Label l1 5 0 2 v1 v2 Labeling f shown in red Sum of Pairwise Potentials 1 ∑ijPij (1 + xi +xj + xixj) 0 3 0 4 X = x xT Xij = xi xj

  12. Uniqueness Constraint ∑ xi = 2 - |L| i  va Integer Programming Formulation Constraints • Integer Constraints xi{-1,1} X = x xT

  13. ∑ xi = 2 - |L| i  va Non-Convex Integer Programming Formulation 1 1 ∑ Pij (1 + xi + xj + Xij) x* = argmin + ∑ ui (1 + xi) 4 2 Convex xi{-1,1} X = x xT

  14. Outline • Convex Relaxations • Integer Programming Formulation • LP Relaxation • SDP Relaxation • SOCP Relaxation • Comparing Relaxations • Move Making Algorithms • Some Interesting Open Problems

  15. ∑ xi = 2 - |L| i  va LP Relaxation Schlesinger, 1976 Retain Convex Part 1 1 ∑ Pij (1 + xi + xj + Xij) x* = argmin + ∑ ui (1 + xi) 4 2 Relax Non-Convex Constraint xi{-1,1} X = x xT

  16. ∑ xi = 2 - |L| i  va LP Relaxation Schlesinger, 1976 Retain Convex Part 1 1 ∑ Pij (1 + xi + xj + Xij) x* = argmin + ∑ ui (1 + xi) 4 2 xi[-1,1] Relax Non-Convex Constraint X = x xT

  17. ∑ Xij = (2 - |L|) xi j  vb LP Relaxation Schlesinger, 1976 X = x xT Xij[-1,1] 1 + xi + xj + Xij≥ 0

  18. ∑ xi = 2 - |L| i  va LP Relaxation Schlesinger, 1976 Retain Convex Part 1 1 ∑ Pij (1 + xi + xj + Xij) x* = argmin + ∑ ui (1 + xi) 4 2 xi[-1,1] Relax Non-Convex Constraint X = x xT

  19. ∑ xi = 2 - |L| i  va ∑ Xij = (2 - |L|) xi j  vb LP Relaxation Schlesinger, 1976 Retain Convex Part 1 1 ∑ Pij (1 + xi + xj + Xij) x* = argmin + ∑ ui (1 + xi) 4 2 xi[-1,1], Xij[-1,1] 1 + xi + xj + Xij≥ 0

  20. Outline • Convex Relaxations • Integer Programming Formulation • LP Relaxation • SDP Relaxation • SOCP Relaxation • Comparing Relaxations • Move Making Algorithms • Some Interesting Open Problems

  21. ∑ xi = 2 - |L| i  va SDP Relaxation Lasserre, 2000 Retain Convex Part 1 1 ∑ Pij (1 + xi + xj + Xij) x* = argmin + ∑ ui (1 + xi) 4 2 Relax Non-Convex Constraint xi{-1,1} X = x xT

  22. ∑ xi = 2 - |L| i  va SDP Relaxation Lasserre, 2000 Retain Convex Part 1 1 ∑ Pij (1 + xi + xj + Xij) x* = argmin + ∑ ui (1 + xi) 4 2 xi[-1,1] Relax Non-Convex Constraint X = x xT

  23. 1 xT = x X Non-Convex SDP Relaxation . . . 1 1 x1 x2 xn x1 x2 . . . xn Xii = 1 Convex Positive Semidefinite Rank = 1

  24. 1 xT = x X Convex SDP Relaxation . . . 1 1 x1 x2 xn x1 x2 . . . xn Xii = 1 Positive Semidefinite

  25. ∑ xi = 2 - |L| i  va SDP Relaxation Lasserre, 2000 Retain Convex Part 1 1 ∑ Pij (1 + xi + xj + Xij) x* = argmin + ∑ ui (1 + xi) 4 2 xi[-1,1] Relax Non-Convex Constraint X = x xT

  26. ∑ xi = 2 - |L| i  va X - xxT 0 SDP Relaxation Lasserre, 2000 Retain Convex Part 1 1 ∑ Pij (1 + xi + xj + Xij) x* = argmin + ∑ ui (1 + xi) 4 2 xi[-1,1] Positive Semidefinite Xii = 1 Inefficient Accurate

  27. Outline • Convex Relaxations • Integer Programming Formulation • LP Relaxation • SDP Relaxation • SOCP Relaxation • Comparing Relaxations • Move Making Algorithms • Some Interesting Open Problems

  28. ∑ xi = 2 - |L| i  va X - xxT 0 Derive SOCP relaxation from the SDP relaxation SOCP Relaxation 1 1 ∑ Pij (1 + xi + xj + Xij) x* = argmin + ∑ ui (1 + xi) 4 2 xi[-1,1] Xii = 1 Further Relaxation

  29. Choose a matrix C1 = UUT 0 Choose a matrix C2 = UUT 0 SOCP Relaxation Kim and Kojima, 2000 Choose a sub-graph G Variables xG and XG C1 (XG - xGxGT) ≥ 0 REPEAT

  30. Outline • Convex Relaxations • Integer Programming Formulation • LP Relaxation • SDP Relaxation • SOCP Relaxation • Comparing Relaxations • Move Making Algorithms • Some Interesting Open Problems

  31. Dominating Relaxation ≥ A B For all MAP Estimation problem (u, P) A dominates B Dominating relaxations are better

  32. Choose a matrix C1 = UUT 0 SOCP Relaxation Kim and Kojima, 2000 Choose a sub-graph G Variables xG and XG C1 (XG - xGxGT) ≥ 0 If G is a tree, LP dominates SOCP

  33. Examples Muramatsu and Suzuki, 2003 (MAXCUT) Ravikumar and Lafferty, 2006 (QP Relaxation) Kumar, Torr and Zisserman, 2006 (Equivalent SOCP Relaxation)

  34. Choose a matrix C1 = UUT 0 SOCP Relaxation Kim and Kojima, 2000 Choose a sub-graph G Variables xG and XG C1 (XG - xGxGT) ≥ 0 If G is a cycle with non-negative P

  35. Choose a matrix C1 = UUT 0 SOCP Relaxation Kim and Kojima, 2000 Choose a sub-graph G Variables xG and XG C1 (XG - xGxGT) ≥ 0 If G is an even cycle with non-positive P

  36. Choose a matrix C1 = UUT 0 SOCP Relaxation Kim and Kojima, 2000 Choose a sub-graph G Variables xG and XG C1 (XG - xGxGT) ≥ 0 If G is an odd cycle with 1 non-positive P

  37. SOCP Relaxation Kumar, Kolmogorov and Torr, 2007 What about other cycles? Dominated by linear cycle inequalities Cliques? Dominated by clique inequalities

  38. Outline • Convex Relaxations • Move Making Algorithms • State of the Art • Comparison with LP Relaxation • Improved Moves • Some Interesting Open Problems

  39. MRFs in Vision lk Pab(i,k) Pab(i,k) = wab min{ d(i-k), M } li wab is non-negative d(.) is a semi-metric distance ub(k) ua(i) vb va Truncated Linear Truncated Quadratic

  40. Current Solution Search Neighbourhood Optimal Move Move Making Energy Solution Space Slide courtesy of Pushmeet Kohli

  41. Outline • Convex Relaxations • Move Making Algorithms • State of the Art • Comparison with LP Relaxation • Improved Moves • Some Interesting Open Problems

  42. Expansion Move Variables take label or retain current label Boykov, Veksler, Zabih 2001 Slide courtesy of Pushmeet Kohli

  43. Expansion Move Variables take label or retain current label Tree Ground House Status: Initialize with Tree Expand Ground Expand House Expand Sky Sky Boykov, Veksler, Zabih 2001 Slide courtesy of Pushmeet Kohli [Boykov, Veksler, Zabih]

  44. Outline • Convex Relaxations • Move Making Algorithms • State of the Art • Comparison with LP Relaxation • Improved Moves • Some Interesting Open Problems

  45. Multiplicative Bounds Expansion Bounds as bad as ICM Bounds 2 2 2 + √2 2M O(√M) 2M O(log h) 2M

  46. Outline • Convex Relaxations • Move Making Algorithms • State of the Art • Comparison with LP Relaxation • Improved Moves • Some Interesting Open Problems

  47. Randomized Rounding yi = (1 + xi)/2 y’i = y0 + y1 + … + yi 0 y’0 y’i y’k y’h = 1 Choose an interval of length L’

  48. Randomized Rounding yi = (1 + xi)/2 y’i = y0 + y1 + … + yi r 0 y’0 y’i y’k y’h = 1 Generate a random number r  (0,1]

  49. Randomized Rounding yi = (1 + xi)/2 y’i = y0 + y1 + … + yi r 0 y’0 y’i y’k y’h = 1 Assign label next to r (if within the interval)

  50. Move Making • Initialize the labeling • Choose interval I of L’ labels • Each variable can • Retain old label • Choose a label from I • Choose best labeling va vb Iterate over intervals Non-submodular move? Submodular overestimation

More Related