480 likes | 645 Views
MATH 527 Deterministic OR. Graphical Solution Method for Linear Programs. 30. 20. 10. 4. 12. 20. 30. 20. 10. 4. 12. 20. 30. 20. 10. 4. 12. 20. 30. 20. 10. 4. 12. 20. 30. 20. 10. 4. 12. 20. 30. 20. 10. 4. 12. 20. 30. 20. 10. 4. 12. 20. 30. 20. 10. 4.
E N D
MATH 527 Deterministic OR Graphical Solution Method for Linear Programs
30 20 10 4 12 20 MATH 327 - Mathematical Modeling
30 20 10 4 12 20 MATH 327 - Mathematical Modeling
30 20 10 4 12 20 MATH 327 - Mathematical Modeling
30 20 10 4 12 20 MATH 327 - Mathematical Modeling
30 20 10 4 12 20 MATH 327 - Mathematical Modeling
30 20 10 4 12 20 MATH 327 - Mathematical Modeling
30 20 10 4 12 20 MATH 327 - Mathematical Modeling
30 20 10 4 12 20 MATH 327 - Mathematical Modeling
30 20 Feasible region 10 4 12 20 The feasible region is a polygon!! MATH 327 - Mathematical Modeling
We must graph the isoprofit line. Straight line All points on the line have the same objective value When problem is minimization, called an isocost line. How?? Choose any point in the feasible region Find its objective value (or z-value) Graph the line objective function = z-value. How do we find the optimal solution?? MATH 327 - Mathematical Modeling
30 Isoprofit line z = 300 20 10 4 12 20 MATH 327 - Mathematical Modeling
30 20 10 4 12 20 Isoprofit line MATH 327 - Mathematical Modeling
30 Isoprofit line 20 10 4 12 20 MATH 327 - Mathematical Modeling
30 20 10 4 12 20 Isoprofit line MATH 327 - Mathematical Modeling
30 20 10 4 12 20 Isoprofit line MATH 327 - Mathematical Modeling
30 20 10 4 12 20 Isoprofit line z = 433 1/3 optimal solution: (20/3, 40/3) z = 433 1/3 MATH 327 - Mathematical Modeling
Binding vs. Nonbinding • A constraint is binding if the optimal solution satisfies that constraint at equality (left-hand side = right-hand side). Otherwise, it is nonbinding. • Binding constraints keep us from finding better solutions!! MATH 327 - Mathematical Modeling
30 20 10 4 12 20 optimal solution: (20/3, 40/3) z = 433 1/3 MATH 327 - Mathematical Modeling
30 20 10 4 12 20 binding optimal solution: (20/3, 40/3) z = 433 1/3 MATH 327 - Mathematical Modeling
binding 30 20 10 binding 4 12 20 optimal solution: (20/3, 40/3) z = 433 1/3 MATH 327 - Mathematical Modeling
Convex Sets • A set of points S is a convex set if the line segment joining any two points in S lies entirely in S Nonconvex Convex MATH 327 - Mathematical Modeling
C A B D Extreme Points • A point P in a convex set S is an extreme point if, for any line segment containing P which lies entirely in S, P is an endpoint of that segment. MATH 327 - Mathematical Modeling
C A B D Extreme Points • A point P in a convex set S is an extreme point if, for any line segment containing P which lies entirely in S, P is an endpoint of that segment. C and D are extreme points A and B are not MATH 327 - Mathematical Modeling
Interesting Facts • The extreme points of a polygon are the corner points. • The feasible region for any linear program will be a convex set. MATH 327 - Mathematical Modeling
Interesting Facts • The feasible region will have a finite number of extreme points • Extreme points are the intersections of constraints (including nonnegativity) • Any linear program that has an optimal solution has an extreme point that is optimal!! • What are the implications? MATH 327 - Mathematical Modeling
12 8 4 2 6 10 MATH 327 - Mathematical Modeling
12 8 4 2 6 10 MATH 327 - Mathematical Modeling
12 8 4 2 6 10 MATH 327 - Mathematical Modeling
12 8 4 2 6 10 MATH 327 - Mathematical Modeling
12 8 4 2 6 10 MATH 327 - Mathematical Modeling
12 8 4 2 6 10 MATH 327 - Mathematical Modeling
12 8 4 2 6 10 MATH 327 - Mathematical Modeling
12 8 4 2 6 10 MATH 327 - Mathematical Modeling
12 Feasible Region 8 4 2 6 10 MATH 327 - Mathematical Modeling
12 8 4 2 6 10 Isocost line z = 54 MATH 327 - Mathematical Modeling
12 8 4 2 6 10 Isocost line MATH 327 - Mathematical Modeling
12 8 4 2 6 10 Isocost line MATH 327 - Mathematical Modeling
12 8 4 2 6 10 Isocost line MATH 327 - Mathematical Modeling
12 8 optimal solution: (5/4, 21/4) z = 36 1/4 4 2 6 10 Isocost line z = 36 1/4 MATH 327 - Mathematical Modeling
Special Cases • So far, our models have had • One optimal solution • A finite objective value • Does this always happen? • What if it doesn’t? MATH 327 - Mathematical Modeling
Special Case # 1: Unbounded Linear Programs • If maximizing: there are points in the feasible region with arbitrarily large objective values. • If minimizing: there are points in the feasible region with arbitrarily small objective values. MATH 327 - Mathematical Modeling
Special Case #1: Unbounded Linear Programs maximization minimization MATH 327 - Mathematical Modeling
CAUTION!!! There is a difference between an unbounded linear program and an unbounded feasible region!!! MATH 327 - Mathematical Modeling
Special Case #2: Infinite Number of Optimal Solutions • When isoprofit/isocost lie intersects an entire line segment corresponding to a binding constraint • Occurs when isoprofit/isocost line is parallel to one of the binding constraints MATH 327 - Mathematical Modeling
Special Case #2: Infinite Number of Optimal Solutions MATH 327 - Mathematical Modeling
Special Case # 3: Infeasible Linear Program • Feasible Region is empty MATH 327 - Mathematical Modeling
Every Linear Program • Has a unique optimal solution, or….. • Has infinite optimal solutions, or….. • Is unbounded, or….. • Is infeasible. MATH 327 - Mathematical Modeling