480 likes | 682 Views
Micro-diffractive nanostructures for cold-atom manipulation (and other interesting stuff). Groupe optique atomique et applications aux nanostructures Université Paul Sabatier—CNRS Toulouse, France. FRISNO-8 Ein-Bokek, Israel February 20-25, 2005. http://www.nanocold.cict.fr.
E N D
Micro-diffractive nanostructures for cold-atom manipulation(and other interesting stuff) Groupe optique atomique et applications aux nanostructures Université Paul Sabatier—CNRS Toulouse, France FRISNO-8 Ein-Bokek, Israel February 20-25, 2005 http://www.nanocold.cict.fr http://www.fastnet.fr
cold atoms output optical field incoming laser light structured surface The basic idea
Arrays of Holes in Metal Films Light transmission spectrum Is this evidence of surface plasmons?
Light transmission througha slit flanked by periodic grooves detected far-field transmission calculated profile Garcia-Vidal, et al., Appl. Phys. Lett. 83, 4500 (2003)
Measuring the transmission profile–atomic fluorescence mapping of the field intensity
field intensity excited atoms Relation between atomic fluorescence and field intensity
100 nm slit flanked by 10 grooves each side calculated measured
How does the slit/groove structureproduce the observed field distributions?
Composite Diffracted Evanescent Wave Lezec and Thio Optics Express, 12 3629 (2004)
Composite Evanescent Wave-I Consider diffraction at a slit of width d. The field along x is given by: - = Kowarz, Appl. Optics. 34, 3055 (1995)
Composite Evanescent Wave-II x/d The phase shift of pi/2 is a signature of the CEW.
CEWs launched on the surface output optical field incoming laser light structured surface
A pi/2 phase shift between the directly transmitted wave and the CEW 50 nm We can “jog” the structures tocompensate for the phase shift variable jog 830 nm 100 nm incoming light
Jogged and unjogged slit structures unjogged jogged inward by ¼ period
Distribution and number of grooves controls the output optical field We can produce a “phased array” with constructive interference in the forward direction. The result is a forward “flame” . far-field intensity, no phase shift far-field intensity, with phase shift
Flame divergence vs. grooves—expmt. and model for unjogged grooves 10 grooves calculation 30 grooves
Flame intensity vs. groove number for jogged and unjogged grooves unjogged jogged
outgoing light incoming light coupling Flame angular distributions f d microscope objective CCD
Angular distribution of light vs. groove-slit spacing (in units of period N) for 5 grooves
Intensity angular distribution—jogged grooves output side, 3 selected distances measured CDEW model
Intensity angular distribution—output side, unjogged red, jogged black CDEW model: Phase shift: rCDEW=p/2 Index: nCDEW=850/830=1.024 Relative field amplitude a/x=2/x
Angular lobe spacing unjogged jogged CDEW model Experiment
Next step: mirror MOT with the optical funnel generated by a planar nanostructured phased array Mirror MOT atom trajectories optical funnel phased array structure plane wave excitation
Toward integrated structures:cold atom sources and transporton a chip
Champs proches optiques : confinement sub-longueur d’onde de la lumière. optique atomique cohérente : diffraction Diffraction and confinement Interaction atomes neutres-lumière interaction dipolaire nanolithographie
Réseau à onde évanescente stationnaire -1 +1 * Proposé et réalisé : J.V. Hajnal & G.I Opat (1989). Théorie : R. Deutschmann (1993), C. Henkel (1994). Expérience : Villetaneuse (1996), Orsay(1998).
Autre approche : potentiel nanostructuré Réseau à onde évanescente nanostructurée : • période • orientation • motif D. van Labeke & D. Barchiesi A. Roberts & J.E. Murphy (1996) Diffraction de l’onde évanescente :
Periodicity controllable through angle of optical coupling-1 50 nm above surface 250 nm above surface
Periodicity controllable through angle of optical coupling-2 50 nm above surface 250 nm above surface
Experimental parameters MOT ldB=5nm Lx=Ly=250nm qdiff=20mrad e=100nm j=40° q=55° n=2.1 (TiO2) zr=250nm
Tales from the future—nanophotonics, addressable atom manipulation with optical arrays
E=10V/200nm E= 0.5 108 V/m BaTiO3:n0=2.4 r42=1300pm/V Dn=0.45 (20%)
Electro-Optic Beaming Control with variable index of refraction Quartz Ag V BaTiO3 SrRu4O3 Variable Depth Focusing
Electro-Optic Beaming Control Quartz Ag V BaTiO3 SrRu4O3 Change n from 0.8 to 1.2 Steering
125µm Future: arrays of optical traps loaded with one or more atoms R. Dumke, et al. PRL 89, 097903 (2002)
10 µm Summary—evolution of conception Yesterday: Today: Tomorrow:
The Group Guillaume Gay Colm O’Dwyer Renaud Mathevet Gaetan Leveque Olivier Alloschery Bruno Viaris