510 likes | 635 Views
高考物理第二轮总复习 力学部分. 在我们生活的这个世界上 , 只有物质和物质的运动规律是客观实在的,除此之外再没有别的了。自然界孕育的生命,包括有智能的人,也不过是物质及物质的运动规律的高级表现形式罢了。我们应以这样一种认识对待客观世界,对待生命和人生。. 【 知识要点 】 一、牛顿定律. 1 、牛顿第一定律 一切物体总是保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 2 、牛顿第二定律 物体的加速度跟所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。 F=ma 3 、牛顿第三定律
E N D
在我们生活的这个世界上,只有物质和物质的运动规律是客观实在的,除此之外再没有别的了。自然界孕育的生命,包括有智能的人,也不过是物质及物质的运动规律的高级表现形式罢了。我们应以这样一种认识对待客观世界,对待生命和人生。在我们生活的这个世界上,只有物质和物质的运动规律是客观实在的,除此之外再没有别的了。自然界孕育的生命,包括有智能的人,也不过是物质及物质的运动规律的高级表现形式罢了。我们应以这样一种认识对待客观世界,对待生命和人生。
【知识要点】一、牛顿定律 1、牛顿第一定律 一切物体总是保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 2、牛顿第二定律 物体的加速度跟所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。 F=ma 3、牛顿第三定律 两个物体之间的作用力和反作用力总是大小相等、方向相反、作用在同一条直线上。
二、功和能 1、动能定理 外力对物体所做功的代数和等于物体动能的增量,也可表述为:合外力对物体所做的功等于物体动能的增量. 2、机械能守恒定律 在只有重力或弹力做功的物体系内,动能和势能可以相互转化,但总的机械能保持不变
三、动量与动量守恒 1、动量定理 物体在一段时间内所受到的合外力的冲量,等于物体在这段时间内动量的变化,对于同一直线上运动的物体其表达式为 2、动量守恒定律 当几个物体组成的物体系不受外力或所受外力之和为零,只有系统内部的物体之间相互作用时,各个物体的动量都可以发生变化,但系统的总动量的大小和方向是保持不变的。这就是动量守恒定律。 对于始终在同一条直线上运动的两个物体组成的系统,动量守恒定律的一般表达式为
四、应用 总体来讲力学的应用问题主要是两类,一类是已知力求运动,一类是已知运动求力。细分又有物体处于平衡状态的问题、包括平抛运动在内的物体做匀变速运动的问题、物体圆周运动的问题、以及振动和波动的问题。 研究和解决问题的方法可以用牛顿定律,可以用动能定理或机械能守恒定律,也可以用动量定理或动量守恒定律来解答。
五、能力要求 1、理解和推理的能力; 2、分析和解决问题的能力; 3、用数学方法解答物理问题的能力; 4、综合及创造的能力; 5、实验能力。
典型例题 例1、如图1-1所示,长为5米的细绳的两端分别系于竖立在地面上相距为4米的两杆顶端A、B。绳上挂一个光滑的轻质挂钩。它钩着一个重为12牛的物体。平衡时,绳中张力T=____
分析与解:本题为三力平衡问题。其基本思路为:选对象、分析力、画力图、列方程。对平衡问题,根据题目所给条件,往往可采用不同的方法,如正交分解法、相似三角形等。所以,本题有多种解法。分析与解:本题为三力平衡问题。其基本思路为:选对象、分析力、画力图、列方程。对平衡问题,根据题目所给条件,往往可采用不同的方法,如正交分解法、相似三角形等。所以,本题有多种解法。 解法一:选挂钩为研究对象,其受力如图1-2所示 设细绳与水平夹角为α,由平衡条件可知:2TSinα=F,其中F=12牛 将绳延长,由图中几何条件得:Sinα=3/5,则代入上式可得T=10牛。
解法二:挂钩受三个力,由平衡条件可知:两个拉力(大小相等均为T)的合力F’与F大小相等方向相反。以两个拉力为邻边所作的平行四边形为菱形。如图1-2所示,其中力的三角形△OEG与△ADC相似,解法二:挂钩受三个力,由平衡条件可知:两个拉力(大小相等均为T)的合力F’与F大小相等方向相反。以两个拉力为邻边所作的平行四边形为菱形。如图1-2所示,其中力的三角形△OEG与△ADC相似, 则: 得: 牛。 想一想:若将右端绳A 沿杆适当下移些,细绳上张力是否变化? (提示:挂钩在细绳上移到一个新位置,挂钩两边细绳与水平方向夹角仍相等,细绳的张力仍不变。)
例2:将细绳绕过两个定滑轮A和B.绳的两端各系一个质量为m的砝码。A、B间的中点C挂一质量为M的小球,M<2m,A、B间距离为l,开始用手托住M使它们都保持静止,如图所示。放手后M和2个m开始运动。求(1)小球下落的最大位移H是多少?(2)小球的平衡位置距C点距离h是多少?例2:将细绳绕过两个定滑轮A和B.绳的两端各系一个质量为m的砝码。A、B间的中点C挂一质量为M的小球,M<2m,A、B间距离为l,开始用手托住M使它们都保持静止,如图所示。放手后M和2个m开始运动。求(1)小球下落的最大位移H是多少?(2)小球的平衡位置距C点距离h是多少?
解:(1)如答案图(a)所示,M下降到最底端时速度为零,此时两m速度也为零,M损失的重力势能等于两m增加的重力势能(机械能守恒)解:(1)如答案图(a)所示,M下降到最底端时速度为零,此时两m速度也为零,M损失的重力势能等于两m增加的重力势能(机械能守恒) 解得
(2)如答案图(b)所示,当M处于平衡位置时,合力为零,T=mg,则(2)如答案图(b)所示,当M处于平衡位置时,合力为零,T=mg,则 Mg-2mgsinα=0
例3、如图3-1所示的传送皮带,其水平部分 ab=2米,bc=4米,bc与水平面的夹角α=37°,一小物体A与传送皮带的滑动摩擦系数μ=0.25,皮带沿图示方向运动,速率为2米/秒。若把物体A轻轻放到a点处,它将被皮带送到c点,且物体A一直没有脱离皮带。求物体A从a点被传送到c点所用的时间。
分析与解:物体A轻放到a点处,它对传送带的相对运动向后,传送带对A的滑动摩擦力向前,则 A 作初速为零的匀加速运动直到与传送带速度相同。设此段时间为t1,则: a1=μg=0.25x10=2.5米/秒2 t=v/a1=2/2.5=0.8秒 设A匀加速运动时间内位移为S1,则: 设物体A在水平传送带上作匀速运动时间为t2,则
设物体A在bc段运动时间为t3,加速度为a2,则:设物体A在bc段运动时间为t3,加速度为a2,则: a2=g Sin37°-μgCos37° =10x0.6-0.25x10x0.8 =4米/秒2 解得:t3=1秒 (t3=-2秒舍去) 所以物体A从a点被传送到c点所用的时间 t=t1+t2+t3=0.8+0.6+1=2.4秒。
例4、如图4-1所示,传送带与地面倾角θ=37°,AB长为16米,传送带以10米/秒的速度匀速运动。在传送带上端A无初速地释放一个质量为0.5千克的物体,它与传送带之间的动摩擦系数为μ=0.5,求:例4、如图4-1所示,传送带与地面倾角θ=37°,AB长为16米,传送带以10米/秒的速度匀速运动。在传送带上端A无初速地释放一个质量为0.5千克的物体,它与传送带之间的动摩擦系数为μ=0.5,求: (1)物体从A运动到B所需时间, (2)物体从A 运动到B 的过程中,摩擦力对物体所做的功(g=10米/秒2)
(1)当物体下滑速度小于传送带时,物体的加速度为a1,(此时滑动摩擦力沿斜面向下)则: t1=v/α1=10/10=1秒 当物体下滑速度大于传送带V=10米/秒 时,物体的加速度为a2,(此时f沿斜面向上)则: 即:10t2+t22=11 解得:t2=1秒(t2=-11秒舍去) 所以,t=t1+t2=1+1=2秒
(2)W1=fs1=μmgcosθS1=0.5X0.5X10X0.8X5=10焦 W2=-fs2=-μmgcosθS2=-0.5X0.5X10X0.8X11=-22焦 所以,W=W1+W2=10-22=-12焦。 想一想:如图4-1所示,传送带不动时,物体由皮带顶端A从静止开始下滑到皮带底端B用的时间为t,则:(请选择) A. 当皮带向上运动时,物块由A滑到B的时间一定大于t。 B. 当皮带向上运动时,物块由A滑到B的时间一定等于t。 C. 当皮带向下运动时,物块由A滑到B的时间可能等于t。 D. 当皮带向下运动时,物块由A滑到B的时间可能小于t。 答案:(B、C、D)
例5、如图5-1所示,长L=75cm的静止直筒中有一不计大小的小球,筒与球的总质量为4千克,现对筒施加一竖直向下、大小为21牛的恒力,使筒竖直向下运动,经t=0.5秒时间,小球恰好跃出筒口。例5、如图5-1所示,长L=75cm的静止直筒中有一不计大小的小球,筒与球的总质量为4千克,现对筒施加一竖直向下、大小为21牛的恒力,使筒竖直向下运动,经t=0.5秒时间,小球恰好跃出筒口。 求:小球的质量。(取g=10m/s2)
分析与解:筒受到竖直向下的力作用后做竖直向下的匀加速运动,且加速度大于重力加速度。而小球则是在筒内做自由落体运动。小球跃出筒口时,筒的位移比小球的位移多一个筒的长度。分析与解:筒受到竖直向下的力作用后做竖直向下的匀加速运动,且加速度大于重力加速度。而小球则是在筒内做自由落体运动。小球跃出筒口时,筒的位移比小球的位移多一个筒的长度。 设筒与小球的总质量为M,小球的质量为m,筒在重力及恒力的共同作用下竖直向下做初速为零的匀加速运动,设加速度为a;小球做自由落体运动。设在时间t内,筒与小球的位移分别为h1、h2(球可视为质点)如图5-2所示。
由运动学公式得: 又有:L=h1-h2 代入数据解得:a=16米/秒2 又因为筒受到重力(M-m)g和向下作用力F,据牛顿第二定律: F+(M-m)g=(M-m)a 得:
例8、一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的内径大得多。在圆管中有两个直径与细管内径相同的小球(可视为质点)。A球的质量为m1,B球的质量为m2。它们沿环形圆管顺时针运动,经过最低点时的速度都为V0。设A球运动到最低点时,B球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m1、m2、R与V0应满足的关系式是。例8、一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的内径大得多。在圆管中有两个直径与细管内径相同的小球(可视为质点)。A球的质量为m1,B球的质量为m2。它们沿环形圆管顺时针运动,经过最低点时的速度都为V0。设A球运动到最低点时,B球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m1、m2、R与V0应满足的关系式是。
分析与解:如图7-1所示,A球运动到最低点时速度为V0,A球受到向下重力mg和细管向上弹力N1的作用,其合力提供向心力。那么,分析与解:如图7-1所示,A球运动到最低点时速度为V0,A球受到向下重力mg和细管向上弹力N1的作用,其合力提供向心力。那么, N1-m1g=m1vo2/R [1] 这时B球位于最高点,速度为V1,B球受向下重力m2g和细管弹力N2作用。球作用于细管的力是N1、N2的反作用力,要求两球作用于细管的合力为零,即要求N2与N1等值反向, N1=N2 [2], 且N2方向一定向下,对B球: N2+m2g=m2v12/R [3]
B球由最高点运动到最低点时速度为V0,此过程中机械能守恒: 即 m2V12/2+m2g2R=m2V02/2 [4] 由[1][2][3][4]式消去N1、N2和V1后得到m1、m2、R与V0满足的关系式是: (m1-m2)v02/R+(m1+5m2)g=0 [5] 说明:(1)本题不要求出某一物理量,而是要求根据对两球运动的分析和受力的分析,在建立[1]-[4]式的基础上得到m1、m2、R与V0所满足的关系式[5]。 (2)由题意要求两球对圆管的合力为零知,N2一定与N1方向相反,这一点是列出[3]式的关键。且由[5]式知两球质量关系m1<m2。
例9、如图8-1所示,质量为m=0.4kg的滑块,在水平外力F作用下,在光滑水平面上从A点由静止开始向B点运动,到达B点时外力F突然撤去,滑块随即冲上半径为 R=0.4米的1/4光滑圆弧面小车,小车立即沿光滑水平面PQ运动。设:开始时平面AB与圆弧CD相切,A、B、C三点在同一水平线上,令AB连线为X轴,且AB=d=0.64m,滑块在AB面上运动时,其动量随位移的变化关系为P=1.6 kgm/s,小车质量M=3.6kg,不计能量损失。求:
(1)滑块受水平推力F为多大? (2)滑块通过C点时,圆弧C点受到压力为多大? (3)滑块到达D点时,小车速度为多大? (4)滑块能否第二次通过C点? 若滑块第二次通过C点时,小车与滑块的速度分别为多大? (5)滑块从D点滑出再返回D点这一过程中,小车移动距离为多少? (g取10m/s2)
分析与解:(1)由P=1.6 =mv, 代入x=S=0.64m,可得滑块到B点速度为: VB=1.6 /m=1.6 =3.2m/s A→B,由动能定理得:FS= mVB2 , 所以 F=mVB2/(2S)=0.4X3.22/(2X0.64)=3.2N (2)滑块滑上C立即做圆周运动,由牛顿第二定律得: N-mg=mVC2/R 而VC=VB则 N=mg+mVC2/R =0.4X10+0.4X3.22/0.4 =14.2N
(3)滑块由C→D的过程中,滑块和小车组成系统在水平方向动量守恒,由于滑块始终紧贴着小车一起运动,在D点时,滑块和小车具有相同的水平速度VDX。 由动量守恒定律得: mVC=(M+m)VDX 所以 VDX=mVC/(M+m) =0.4X3.2/(3.6+0.4) =0.32m/s
(4)滑块一定能再次通过C点。因为滑块到达D点时,除与小车有相同的水平速度VDX外,还具有竖直向上的分速度VDY,因此滑块以后将脱离小车相对于小车做竖直上抛运动(相对地面做斜上抛运动)。因题中说明无能量损失,可知滑块在离车后一段时间内,始终处于D点的正上方(因两者在水平方向不受力作用,水平方向分运动为匀速运动,具有相同水平速度), 所以滑块返回时必重新落在小车的D点上,然后再圆孤下滑,最后由C点离开小车,做平抛运动落到地面上。 由机械能守恒定律得: mVC2=mgR+ (M+m)VDX2+ mVDY2 所以
以滑块、小车为系统,以滑块滑上C点为初态,滑块第二次滑到C点时为末态,此过程中系统水平方向动量守恒,系统机械能守恒(注意:对滑块来说,此过程中弹力与速度不垂直,弹力做功,机械能不守恒)得:以滑块、小车为系统,以滑块滑上C点为初态,滑块第二次滑到C点时为末态,此过程中系统水平方向动量守恒,系统机械能守恒(注意:对滑块来说,此过程中弹力与速度不垂直,弹力做功,机械能不守恒)得: mVC=mVC‘+MV 即 mVC2= mVC’2+ MV2 上式中VC‘、V分别为滑块返回C点时,滑块与小车的速度, V=2mVC/(M+m) =2X0.4X3.2/(3.6+0.4) =0.64m/s VC’=(m-M)VC/(m+M) =(0.4-3.6)X3.2/(0.4+3.6) =-2.56m/s(与V反向)
(5)滑块离D到返回D这一过程中,小车做匀速直线运动,前进距离为: △S=VDX2VDY/g =0.32X2X1.1/10 =0.07m
例10、如图9-1所示,质量为M=3kg的木板静止在光滑水平面上,板的右端放一质量为m=1kg的小铁块,现给铁块一个水平向左速度V0=4m/s,铁块在木板上滑行,与固定在木板左端的水平轻弹簧相碰后又返回,且恰好停在木板右端,求铁块与弹簧相碰过程中,弹性势能的最大值EP。例10、如图9-1所示,质量为M=3kg的木板静止在光滑水平面上,板的右端放一质量为m=1kg的小铁块,现给铁块一个水平向左速度V0=4m/s,铁块在木板上滑行,与固定在木板左端的水平轻弹簧相碰后又返回,且恰好停在木板右端,求铁块与弹簧相碰过程中,弹性势能的最大值EP。
分析与解:在铁块运动的整个过程中,系统的动量守恒,因此弹簧压缩最大时和铁块停在木板右端时系统的共同速度(铁块与木板的速度相同)可用动量守恒定律求出。在铁块相对于木板往返运动过程中,系统总机械能损失等于摩擦力和相对运动距离的乘积,可利用能量关系分别对两过程列方程解出结果。 设弹簧压缩量最大时和铁块停在木板右端时系统速度分别为V和V’,由动量守恒得: mV0=(M+m)V=(M+m)V’ 所以, V=V’=mV0/(M+m)=1X4/(3+1)=1m/s
铁块刚在木板上运动时系统总动能为: EK=mV02/2=0.5X1X16=8J 弹簧压缩量最大时和铁块最后停在木板右端时,系统总动能都为: EK’=(M+m)V2/2=0.5X(3+1)X1=2J 铁块在相对于木板往返运过程中,克服摩擦力f所做的功为: Wf=f2L=EK-EK’=8-2=6J 铁块由开始运动到弹簧压缩量最大的过程中,系统机械能损失为: fs=3J 由能量关系得出弹性势能最大值为: EP=EK-EK‘-fs=8-2-3=3J
说明:由于木板在水平光滑平面上运动,整个系统动量守恒,题中所求的是弹簧的最大弹性势能,解题时必须要用到能量关系。说明:由于木板在水平光滑平面上运动,整个系统动量守恒,题中所求的是弹簧的最大弹性势能,解题时必须要用到能量关系。 在解本题时要注意两个方面: ①.是要知道只有当铁块和木板相对静止时(即速度相同时),弹簧的弹性势能才最大;弹性势能最大时,铁块和木板的速度都不为零;铁块停在木板右端时,系统速度也不为零。 ②.是系统机械能损失并不等于铁块克服摩擦力所做的功,而等于铁块克服摩擦力所做的功和摩擦力对木板所做功的差值,故在计算中用摩擦力乘上铁块在木板上相对滑动的距离。
例11、如图10-1所示,劲度系数为 K的轻质弹簧一端与墙固定,另一端与倾角为θ的斜面体小车连接,小车置于光滑水平面上。在小车上叠放一个物体,已知小车质量为 M,物体质量为m,小车位于O点时,整个系统处于平衡状态。现将小车从O点拉到B点,令OB=b,无初速释放后,小车即在水平面B、C间来回运动,而物体和小车之间始终没有相对运动。求:(1)小车运动到B点时的加速度大小和物体所受到的摩擦力大小。(2)b的大小必须满足什么条件,才能使小车和物体一起运动过程中,在某一位置时,物体和小车之间的摩擦力为零
分析与解: (1)所求的加速度a和摩擦力f是小车在B点时的瞬时值。取M、m和弹簧组成的系统为研究对象,由牛顿第二定律: kb=(M+m)a 所以a=kb/(M+m)。 取m为研究对象,在沿斜面方向有: f-mgsinθ=macosθ 所以, f=mgsinθ+m cosθ=m(gsinθ+ cosθ)
(2)当物体和小车之间的摩擦力的零时,小车的加速度变为a’,小车距O点距离为b’,取m为研究对象,有: mgsinθ=ma’cosθ 取M、m和弹簧组成的系统为研究对象,有: kb‘=(M+m)a’ 以上述两式联立解得: b‘= (M+m)gtgθ 说明:在求解加速度时用整体法,在分析求解m受到的摩擦力时用隔离法。整体法和隔离法两者交互运用是解题中常用的方法,希读者认真掌握。
图11-1 例12、质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上。平衡时,弹簧的压缩量为Xo,如图11-1所示。一物块从钢板正上方距离为 3Xo的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连。它们到达最低点后又向上运动。已知物块质量也为m时,它们恰能回到O点。若物块质量为2m,仍从A处自由落下,则物块与钢板回到O点时,还具有向上的速度。求物块向上运动到达的最高点O点的距离。
分析与解:物块自由下落,与钢板碰撞,压缩弹簧后再反弹向上,运动到O点,弹簧恢复原长。碰撞过程满足动量守恒条件。压缩弹簧及反弹时机械能守恒。自由下落3Xo,根据机械能守恒:分析与解:物块自由下落,与钢板碰撞,压缩弹簧后再反弹向上,运动到O点,弹簧恢复原长。碰撞过程满足动量守恒条件。压缩弹簧及反弹时机械能守恒。自由下落3Xo,根据机械能守恒: 所以 物块与钢板碰撞时,根据动量守恒: mv0=(m+m)v1(v1为碰后共同速度) V1=V0/2=
物块与钢板一起升到O点,根据机械能守恒: 2mV12+Ep=2mgx0 [1] 如果物块质量为2m,则:2mVo=(2m+m)V2, 即V2= Vo 设回到O点时物块和钢板的速度为V,则: 3mV22+Ep=3mgx0+ 3mV2 [2] 从O点开始物块和钢板分离,由[1]式得: Ep=mgx0 代入[2]得: m( Vo)2+ mgx0=3mgx0 + 3mV2 所以,V=gx0即
图12-1 例13、如图12-1所示,有两块大小不同的圆形薄板(厚度不计),质量分别为M和m,半径分别为R和r,两板之间用一根长为0.4m的轻绳相连结。开始时,两板水平放置并叠合在一起,静止于高度为0.2m处。然后自由下落到一固定支架C上,支架上有一半径为R‘(r<R’<R)的圆孔,圆孔与两薄板中心均在圆板中心轴线上,木板与支架发生没有机械能损失的碰撞。碰撞后,两板即分离,直到轻绳绷紧。在轻绳绷紧的瞬间,两物体具有共同速度V,如图12-2所示。求:(1)若M=m,则V值为多大 (2)若M/m=K,试讨论 V的方向与K值间的关系。
图12-2 分析与解:开始 M与m自由下落,机械能守恒。 M与支架C碰撞后,M以原速率返回,向上做匀减速运动。m向下做匀加速运动。在绳绷紧瞬间,内力(绳拉力)很大,可忽略重力,认为在竖直方向上M与m系统动量守恒。 (1)据机械能守恒: (M+m)gh=(M+m)V02/2 所以,V0= =2m/s M碰撞支架后以Vo返回作竖直上抛运动,m自由下落做匀加速运动。在绳绷紧瞬间,M速度为V1,上升高度为h1,m的速度为V2,下落高度为h2。则: h1+h2=0.4m,h1=V0t-gt2,h2=V0t+gt2, 而 h1+h2=2V0t, 故:
所以:V1=V0-gt=2-10×0.1=1m/s V2=V0+gt=2+10×0.1=3m/s 根据动量守恒,取向下为正方向,mV2-MV1=(M+m)V,所以 那么当m=M时,V=1m/s; 当M/m=K时,V= 。 讨论: ①K<3时,V>0,两板速度方向向下。 ②K>3时,V<0,两板速度方向向上。 ③K=3时,V=0,两板瞬时速度为零,接着再自由下落。
图13-1 例14、如图13-1所示,物体A从高h的P处沿光滑曲面从静止开始下滑,物体B用长为L的细绳竖直悬挂在O点且刚和平面上Q点接触。已知mA=mB,高h及S(平面部分长)。若A和B碰撞时无能量损失。(1)若L≤h/4,碰后A、B各将做什么运动?(2)若L=h,且A与平面的动摩擦因数为μ,A、B可能碰撞几次?A最终在何处?
分析与解:当水平部分没有摩擦时,A球下滑到未碰B球前能量守恒,与B碰撞因无能量损失,而且质量相等,由动量守恒和能量守恒可得两球交换速度。A 停在Q处,B碰后可能做摆动,也可能饶 O点在竖直平面内做圆周运动。 如果做摆动,则经一段时间,B反向与A相碰,使A又回到原来高度,B停在Q处,以后重复以上过程,如此继续下去。 若B做圆周运动,B逆时针以O为圆心转一周后与A相碰,B停在Q处,A向右做匀速运动。 由此分析,我们可得本题的解如下: (1)A与B碰撞前A的速度: mgh=mVA2/2, VA= 因为mA=mB,碰撞无能量损失,两球交换速度,得:VA’=0,VB’=VA=
设B球到最高点的速度为Vc,B做圆周运动的临界条件: mBg=mBV2/L [1] 又因 mBVB‘2/2=mBV2/2+mBg2L [2] 将[1]式及VB’= 代入[2]式得:L=2h/5 即L≤2h/5时,A、B碰后B才可能做圆周运动。而题意为L=h/4<2h/5,故A与B碰后,B必做圆周运动。 因此(1)的解为:A与B碰后A停在Q处,B做圆周运动,经一周后,B再次与A相碰,B停在Q处,A向右以速度 做匀速直线运动。
图13-2 (2)由上面分析可知,当L=h时,A与B碰后,B只做摆动,因水平面粗糙,所以A在来回运动过程中动能要损失。设碰撞次数为n,由动能定理可得: mAgh-nμmAgS=0 所以n=h/μS 讨论:若n为非整数时,相碰次数应凑足整数数目。 如n=1.2,则碰撞次数为两次。 当n为奇数时,相碰次数为(n-1)次。如n=3,则相碰次数为两次,且A球刚到达Q处将碰B而又未碰B;图13-2 当n为偶数时,相碰次数就是该偶数的数值,如n=4,则相碰次数为四次。球将停在距B球S处的C点。A球停留位置如图13-2所示。
图20-1 例23、如图20-1所示,一列横波t时刻的图象用实线表示,又经△t=0.2s时的图象用虚线表示。已知波长为2m,则以下说法正确的是:( ) A.若波向右传播,则最大周期是2s。 B.若波向左传播,则最大周期是2s。 C.若波向左传播,则最小波速是9m/s。 D.若波速是19m/s,则传播方向向左。