610 likes | 752 Views
Speed Control System. Team Green. Steady State and Step Response Performance. John Barker John Beverly Keith Skiles UTC ENGR329-001 2-15-06. Outline. System Background Description, SSOC, Step Response FOPDT Model Model Theory Results Conclusions. Aerator Mixer Speed Control System.
E N D
Speed Control System Team Green Steady State and Step Response Performance John Barker John Beverly Keith Skiles UTC ENGR329-001 2-15-06
Outline • System Background • Description, SSOC, Step Response • FOPDT Model • Model Theory • Results • Conclusions
Laplace Domain FOPDT Model • System Transfer Function • G(s) = Ke /τs+1 • Parameters t0=Dead Time K = System Gain τ = Time Constant -t0s
FOPDT Model • Model Equation in Time Domain • C(t) = A*u(t-td-t0)*K*(1-e ) -(t-td-t0)
Overall Results Experimental Results: Steady State Gain : K= 17.1RPM/% ± 0.10 Dead Time : t0= 0.06s ± 0.012 Time Constant : τ = 0.19s ± 0.034 Model Results: Steady State Gain : K= 17.4RPM/% Dead Time : t0= 0.1s Time Constant : τ = 0.23s
Conclusions • Operating Range 150-1700RPM • K = 17.4 RPM/% • t0= 0.1s • τ= 0.23s
Red Team -Pressure-Steady State Operating And Step Response Dennis To Cory Richardson Jamison Linden 10/3/2014, UTC, ENGR-329
Contents • Background • Description, SSOC, Step Response • FOPDT Model • Model Theory • Results • Conclusions
Background • System • Input • Output • SSOC • Operating Range
System Figure 1. Schematic diagram of the Dunlap Plant Spray-Paint Booths
Block Diagram Figure 2. Block diagram of paint Booth System
SSOC Operating Range for Output Operating Range for Input
Operating Range • Input operating range (45%-90%) • Output operating range (0.5-10 cm-H2O)
Theory • Transfer Function • Parameters
m(s) Input c(s) Output Transfer Function - t s Ke 0 t + s 1 Transfer Function K=Gain=∆c/∆m=(cm-H2O)/% to=Dead Time τ=Time Constant (use 0.632∆c) Uncertainties (max-min)*(t/n)
Parameters Middle Lower Upper
Results • Experimental (Step-up, Step-down) • Time Response (Gain) • Time Response (Dead Time) • Time Response (Time Constant)
FOPDT Model • Model Equation • C(t) = A*u(t-td-t0)*K*(1-e-((t-td-t0)/tau)) • Parameters • td = 15 sec. • A = 15 % • K = .21 cm-H2O /% • t0 = 0.52 sec. • tau = 1.8 sec. • inbl= 60% • outbl=2 cm-H2O
Results • EXPERIMENTAL PARAMETERS INCREASING • STEADY STATE GAIN K 0.1-0.35 cm-H2O/% DEAD TIME to 0.5 s • TIME CONSTANT t 1.7 s • EXPERIMENTAL PARAMETERS DECREASING • STEADY STATE GAIN K 0.1-0.35 cm-H2O /% • DEAD TIME to 0.5 s • TIME CONSTANT t 1.7 s
Conclusions • Input operating range • Output operating range • (K) goes up as the input % is increased (0.1-0.35cm-H2O/%) • (to) stays constant (0.5sec) • ( ) stays constant (1.7sec)
Flow Rate Control System “Step Response Modeling” February 15, 2006 U.T.C. Engineering 329
Yellow Team • Jimy George • Jeff Lawrence • Taylor Murphy • Jennifer Potter
Outline • System Background • Description, SSOC, Step Response • FOPDT Theory • Model Theory • Results • Conclusions