1 / 21

Chapter 17 Recursion ( 递归 )

Chapter 17 Recursion ( 递归 ). §17.1 Introduction §17.2 Methodology of Recursion Design §17.3 Recursion vs. Iteration. §17.1 Introduction. Computing Factorial ( 阶乘 ). Factorial in mathematics: f(n) = n! = 1*2*..*n 1 if n=0 = n*(n-1)! if n>0.

Download Presentation

Chapter 17 Recursion ( 递归 )

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 17 Recursion (递归) §17.1 Introduction §17.2 Methodology of Recursion Design §17.3 Recursion vs. Iteration

  2. §17.1 Introduction • Computing Factorial (阶乘) • Factorial in mathematics: f(n) = n! = 1*2*..*n 1 if n=0 = n*(n-1)! if n>0 • Factorial in C++ int factorial(int n){ int result; if (n==0) result =1; else result = n *factorial(n-1); return result; } Recursive Call!

  3. Computing Factorial factorial(3) = = 3 * factorial(2) = 3 * (2 * factorial(1)) = 3 * ( 2 * (1 * factorial(0))) = 3 * ( 2 * ( 1 * 1))) = 3 * ( 2 * 1) = 3 * 2 = 6 factorial(0) = 1; factorial(n) = n*factorial(n-1);

  4. Trace Recursive Factorial factorial(4) return 24 to caller Step 0: execute factorial(4) Step 9: return 24 Space Required for factorial(0) 4*factorial(3) Space Required Step 1: execute factorial(3) Step 8: return 6 for factorial(1) 3*factorial(2) Space Required Step 2: execute factorial(2) Step 7: return 2 for factorial(2) 2*factorial(1) Space Required Step 3: execute factorial(1) for factorial(3) Step 6: return 1 1*factorial(0) Space Required for factorial(4) Step 4: execute factorial(0) Step 5: return 1 return 1

  5. Recursive Function • Recursive Function • A function with recursive call • Recursive call • A function calls itself, directly or indirectly f( ){ …… f( ); …… } f1( ){ f2( ){ …… …… f2( ); f1( ); …… …… } }

  6. Fibonacci Numbers Finonacci series: 0 1 1 2 3 5 8 13 21 34 55 89 … indices: 0 1 2 3 4 5 6 7 8 9 10 11 … 0, if i = 0 fib(i) = 1, if i = 1 fib(i -1) + fib(i -2), if i >=2 fib(3) = fib(2) + fib(1) = (fib(1) + fib(0)) + fib(1) = (1 + 0) +fib(1) = 1 + fib(1) = 1 + 1 = 2 ComputeFibonacci

  7. Fibonacci Numbers

  8. §17.2 Methodology of Recursion Design • Characteristics of Recursion • Different cases using selection statement • One or more base cases (the simplest case) • To stop recursion • Every recursive call reduces the original problem • To bring it increasingly closer to and eventually to be the base case

  9. Problem Solving Using Recursion • General – thinking recursively • Divide and conquer • Sub-problems resemble the original void nPrintln(string msg, int times) { if (times >= 1) { cout << msg << endl; nPrintln(msg, times - 1); } } bool isPalindrome(const string s) { if (strlen(s) <= 1) return true; else if (s[0] != s[strlen(s) - 1]) return false; else return isPalindrome(substring(s, 1, strlen(s) - 2)); }

  10. Recursive Helper Function • Recursive helper function • A recursive function with additional parameters to reduce the problem • Especially useful for functions involving strings/arrays bool isPalindrome(const char * const s, int low, int high) { if (high <= low) return true; else if (s[low] != s[high]) return false; else return isPalindrome(s, low + 1, high - 1); } bool isPalindrome(const char * const s) { return isPalindrome(s, 0, strlen(s) - 1); }

  11. Case Studies • Recursive Selection Sort • Find the largest number in the list and swaps it with the last number. • Ignore the last number and sort the remaining smaller list recursively. RecursiveSelectionSort

  12. Recursive Binary Search • If the key is less than the middle element, recursively search the key in the first half of the array. • If the key is equal to the middle element, the search ends with a match. • If the key is greater than the middle element, recursively search the key in the second half of the array. RecursiveBinarySearch

  13. Towers of Hanoi • There are n disks labeled 1, 2, 3, . . ., n, and three towers labeled A, B, and C. • No disk can be on top of a smaller disk at any time. • All the disks are initially placed on tower A. • Only one disk can be moved at a time, and it must be the top disk on the tower.

  14. Solution to Towers of Hanoi Decompose the problem into three subproblems. n  n-1  n-2  … 1, move it directly!

  15. 1 2 A B C A B C A B C 4 5 3 A B C A B C A B C 6 7 A B C A B C Towers of Hanoi TowersOfHanoi 1. 把n-1个盘从A搬到C,借助B 2. 把A上剩下的最大的一个盘搬到B 3. 再把n-1个盘从C搬到B,借助A 4. 当n==1时,直接从A搬到B即可

  16. Eight Queens boolisValid(int row, int column) { for (int i = 1; i <= row; i++) if (queens[row - i] == column || queens[row - i] == column - i || queens[row - i] == column + i) return false; // There is a conflict return true; // No conflict } EightQueen

  17. §17.3 Recursion vs. Iteration (迭代) • Negative aspects of recursion • High cost in both time and memory • Recursion  Iteration • Any recursive function can be converted to non-recursive (iterative) function • When to use recursion? Depending on the problem. • Recursion is suitable for “recursive” problems

  18. f(n)= n! int factorial(int n){ int result; int i; for(i=1;i<=n;i++) result *= i; return result; } int factorial(int n){ int result; if(n==0) result =1; else result = n*factorial(n-1); return result; } Recursion vs. Iteration

  19. Recursion vs. Iteration f(n) = 0 n=0 1 n=1 f(n-1)+f(n-2) n>1 int fib (int n) { int result, i, pre1, pre2 ; result = 0; i =2; pre2 = 1 ; while (i<=n) { pre1 = pre2 ; pre2 = result ; result = pre1 + pre2; i++; } return result; } int fib (int n){ int result; if (n==0) result =0; else if (n==1) result =1; else result = fib (n-1)+ fib (n-2); return result; }

  20. Summary • Concept of recursion • Design of recursive functions • Recursion vs. iteration

  21. Homework Questions 1. Please write a recursive function to solve the Sudoku problem. 2. How to find all possible solutions for the Eight Queens problem? • (Just for exercise by yourself. No need to submitting it.)

More Related