570 likes | 748 Views
In-beam Spectroscopy of Transfermium Nuclei. Saclay, 30 January 2007 Rauno Julin Department of Physics University of Jyväskylä Finland JYFL. Outline: Introduction Even-Even 254 No ( Z =102, N = 152 ) 250 Fm ( Z =100, N = 150 ) Odd-Proton 251 Md (Z = 101, N = 150)
E N D
In-beam Spectroscopy of Transfermium Nuclei Saclay, 30 January 2007 Rauno Julin Department of Physics University of Jyväskylä Finland JYFL
Outline: • Introduction • Even-Even • 254No ( Z =102, N = 152 ) • 250Fm ( Z =100, N = 150 ) • Odd-Proton • 251Md (Z = 101, N = 150) • 255Lr (Z = 103, N = 152) • Odd-Neutron • 253No (Z = 102, N = 151) • Future plans
Spectroscopy of very neutron deficient • and heavy nuclei at JYFL • Can be produced via fusion evaporation with stable-ion beams and stable targets • Short-living alpha or proton emitters → tagging methods • Cross-sections down to 1 nb • Only levels near the yrast line populated
RDT Instrumentation at JYFL JUROGAM 43 Ge + BGO Eff. 4% GREAT Focal plane spectrometer RITU Gas-filled recoil separator Transmission 20-50 % TDR Total Data Readout Triggerless data acquisition system with 10 ns time stamping + GRAIN the Analyser
SACRED electron spectrometer at the RITU target prompt e-
Transfermium Nuclei • Produced in asymmetric cold-fusion reaction – X(48Ca,2n)Y • → ideal for the gas-filled separator RITU • → Only one reaction channel open • → Total compound cross-section down to 50 mb • → Ibeam up to 30pnA on a 0.5mg/cm2 target in in-beam runs • Fission dominates: 100000 : 1 • → Ibeam limited by the Ge rate • → Very low focal-plane rate • → Enables long t1/2 – α – tagging
254No Z = 102, N = 152
254No In-beam γ- rays from 208Pb(48Ca,2n) 254No - 2µb JUROGAM + RITU 943 842 S. Eeckhaudt et al. EPJ A26, (2005), 227
In-beam γγcoincidences from254No 254No ?
254No SACRED + RITU data 254No-recoilgated in-beam conversion electrons from 208Pb(48Ca,2n) 254No Discrete lines + M1 continuum M1 P.A. Butler at al. PRL 89 (2002) 202501
254No Levelscheme R.-D. Herzberg et al. Nature442, 896-899 (24 August 2006) Short isomer (16+) Long isomer 8- 3+ 55 s
250Fm Z = 100, N = 150
Singles Gamma-Ray Spectra from 204Hg(48Ca,2n)250Fm(HgS targets) A. Pritchard, R.-D. Herzberg et al., University of Liverpool
250Fm preliminary JUROGAM Tagged with isomer PT Greenlees, RDH et al, preliminary!
? ? 250Fm Levelscheme PT Greenlees, RDH et al, preliminary!
Kinematic moment of inertia J(1) even – even nuclei
Dynamic moment of inertia J(2) even – even nuclei
Dynamic moment of inertia even – even nuclei
250Fm Dynamic Moment of Inertia J(2) Theory: M. Bender et al., NPA 723 (2003) 354 ♦ Exp
250Fm Kinematic and Dynamic Moment of Inertia J(1) and J(2) A Afanasiev, priv comm.
Kinematic and Dynamic Moments of Inertia J(1) and J(2) A. Afanasiev, PRC 67, 24309, (2002)
[514]7/2- [521]1/2- [633]7/2+
gK ~ 0.7Mainly E2 7+2 [633] 7-2 [514] 7+ 2 7- 2 gK~1.3 MainlyM1 1-2 [521] Mainly E2 a ~ 0.9: gK ~ -0.55 1- 2 Electromagnetic Properties • Odd-proton orbitals in 251Md / 255Lr • B(M1)/B(E2) depends on (gK-gR)/Q0
Prompt γ-ray spectroscopy of 251Md and 255Lr • 205Tl(48Ca,2n)251Md • ~ 760 nb • (A. Chatillon, Ch. Theisen et al. ) • 209Bi(48Ca,2n)255Lr • ~ 300 nb (S. Ketelhut, P. Greenlees et al.)
251Md No signature partner : K=1/2 γγ coincidences Recoil Tagging First rotational band in an odd-Z transfermium
Dynamical Moments of Inertia J(2) J (2) (hbar2MeV-1) Rotational Frequency
251Md Dynamic Moment of Inertia J(2) Theory: M. Bender et al., NPA 723 (2003) 354
7+2 7-2 7-2 7-2 7+2 7+2 430 300 200 185 100 ½- ½- ½- W.S. S. Ćwiok et al. HFB + Gogny H. Goutte, priv. comm. HFB + SLy4 M. Bender et al.
255Lr – Recoil Tagging 209Bi(48Ca,2n)255Lr
253No The ground state of 253No is a neutron 9/2- [734] state GREAT spectra from 207Pb(48Ca,2n)253No 1.7 min γ rays electrons Confirmed by F.P. Heßberger et al. E.P.J. A 22, 417 (2004)
EarlierGammasphere+FMA experiment207Pb(48Ca,2n)253No – 0.5µbP. Reiter et al. PRL 95, 032501 (2005) 253No
JUROGAM + RITU Recoil-gated γrays from 207Pb(48Ca,2n)253No 253No
Exp 253No It is not 7/2+[624] band but 9/2-[734] K=7/2 simulation K=9/2 simulation 253No
It is not 7/2+[624] band but 9/2-[734] 253No
253No SACRED + RITU data In-beam conversion electrons from 207Pb(48Ca,2n) 253No Exp 9/2- [734] Indeed K=9/2 simulation P. Butler et al. K=7/2 simulation
Theory: M. Bender et al., NPA 723 (2003) 354
PERSPECTIVES • Improved sensitivity for in-beam studies: • Digital signal processing → Higher counting rate • Development of high-intensity beams • In-beam gamma - electron concidences for SHE: • Combined gamma-ray and electron spectrometer - SAGE
PERSPECTIVES • Improved sensitivity for in-beam studies: • Digital signal processing → Higher counting rate • Development of high-intensity beams • 50Ti + 208Pb → 256Rf + 2n • In-beam gamma - electron concidences for SHE: • Combined gamma-ray and electron spectrometer - SAGE
In-beam γ rays from 208Pb(50Ti,2n)256Rf – 12nb 700 recoils ↔ 25pnA, 1 week Simulation – a random bit of the 254No experiment 256Rf Z = 104
PERSPECTIVES • Improved sensitivity for in-beam studies: • Digital signal processing → Higher counting rate • Development of high-intensity beams • In-beam gamma - electron concidences for SHE: • Combined gamma-ray and electron spectrometer - SAGE
SAGE UK investment