1 / 32

ESANTIONAJUL

ESANTIONAJUL. Conf.univ.dr. Georgeta Zanoschi. INDICATORI DE TENDINŢĂ CENTRALĂ PENTRU CARACTERISTICILE CANTITATIVE. Speranţa de viaţă la naştere Durata mediană de viaţă Vârsta modală la deces. MODULUL. Utilitatea practică a medianei

chika
Download Presentation

ESANTIONAJUL

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ESANTIONAJUL Conf.univ.dr. Georgeta Zanoschi

  2. INDICATORI DE TENDINŢĂ CENTRALĂ PENTRU CARACTERISTICILE CANTITATIVE

  3. Speranţa de viaţă la naştere Durata mediană de viaţă Vârsta modală la deces MODULUL Utilitatea practică a medianei I 2500 g 3000 g 3500 g II 2500 g 3000 g 5000 g

  4. INDICATORI DE VARIABILITATE STATISTICĂ PENTRU CARACTERISTICILE CANTITATIVE • /. Mărimi absolute : • rangul (amplitudinea variaţiei) • deviaţia medie • deviaţia standard (sigma) • 2. Mărimi relative : • coeficientul de variaţie. • coeficientul de precizie

  5. ; Serie simplă Serie grupată Rangul: R = X n - Xi Deviaţia medie:

  6. Acesta reprezintă raportul procentual dintre deviaţia standard şi media aritmetică a seriei de observaţii respective: Pătratul deviaţiei standard se numeşte VARIANTĂ COEFICIENTUL DE PRECIZIE (CP.)

  7. = 9,8 zileDeviaţia standard în cazul seriei grupate: Rezultatul final (reducerea datelor statistice) este: = 9,8 zile = 1,3 zile n =35 Perioada de incubaţie a tusei convulsive, la lotul de 35 bolnavi studiat, este de: 9,8 ±1,3 zile.

  8. Poziţia Me pentru seria grupată

  9. Prelucrarea caracteristicilor calitative • Definiţia probabilităţii; • PA = Nr. cazuri favorabile/nr.cazuri posibile sau existente • Probabilitatea matematică se stabileşte apriori; probabilitatea empirică (experimentală) • Probabilitatea fundamentală se stabileşte aposteriori; probabilitatea empirică (experimentală) Masculin: p = 0,515 Feminin: q = 0,485 P = 51,5 % Q = 48,5 % p + q = 1 P + Q = 100

  10. Probabilitatea fundamentală In biostatistică, în studiul fenomenelor de masă acţionează probabilitatea fundamentală, care este o probabilitate medie. Probabilitatea producerii unui eveniment, merge de la imposibilitatea producerii lui şi până la certitudine, şi variază între 0 – 1, 0 – 100, fără a atinge cele două extreme. Cu cât probabilitatea se apropie de 1 sau 100 cu atât probabilitatea producerii evenimentului este mai mare. Dacă p sau P este egal cu ½, atunci sunt şanse egale ca evenimentul să se producă sau să nu se producă.

  11. Probabilităţi simple • Probabilităţi compuse reprezintă probabilitatea de a se realiza în acelaşi timp fie unul, fie altul din mai multe evenimente P3 şi P5 produsul celor două probabilităţi P3 sau P5 suma celor două probabilităţi • Caracteristici calitative alternative p + q = 1 P + Q = 100

  12. Prelucrarea datelor statistice calitative • Probabilitatea nu se aplică pe caz în parte ci pe colectivitate • Prelucrarea datelor statistice în cazul caracteristicilor calitative, se realizează prin calculul frecvenţei acestora • Frecvenţa relativă a apariţiei unui eveniment este considerată probabilitatea acelui eveniment. De aceea, frecvenţa se notează cu P • Calculul variaţiei (dispersiei) unei frecvenţe (deviaţia standard)

  13. Calculul erorii standard pentru frecvenţe • Generalizarea datelor • Intervalul de încredere sau de siguranţă statistică IC = LI LS

  14. Definiţia IC • Este intervalul în care pornind de la media pe eşantion, dacă studiem caracteristici cantitative sau de la frecvenţa pe eşantion, în cazul caracteristicilor calitative, putem estima, media sau frecvenţa pentru colectivitatea generală (N) • IC stabileşte media sau frecvenţa pentru colectivitatea generală (N). • Media sau frecvenţa pentru N este estimată şi nu stabilită cu certitudine, ci cu un grad ridicat de probabilitate.

  15. TEORIA EŞANTIONAJULUI • Eşantion - mostră - colectivitate de selecţie - colectivitate parţială extrasă aleator dintr-o populaţie N - colectivitatea generală - colectivitatea de bază - colectivitatea de referinţă - bază de sondaj - populaţia ţintă

  16. În statistică Selecţie – reprezintă o colectivitate constituită absolut întâmplător • În vorbirea curentă Selecţie – înseamnă o alegere dirijată după un criteriu bine stabilit • Eşantionul trebuie să fie reprezentativ pentru colectivitatea generală (N), de unde a fost extras. • Reprezentativitatea este determinată de alegerea aleatoare a unităţilor statistice care vor alcătui eşantionul şi nu de volumul acestuia. • Precizia eşantionului este determinată de volumul acestuia, adică, de numărul de unităţi statistice, care vor alcătui eşantionul

  17. Tipuri de eşantionaj • Schema de constituire a unui eşantion dă şi denumirea tipului de eşantionaj • A – eşantion probabilistic (aleator) • B – eşantion neprobabilistic, nealeator, empiric • A – eşantion probabilistic (aleator) a) eşantion aleatoriu simplu sau elementar Realizarea sa cuprinde 3 etape: • Realizarea bazei de sondaj • Mărimea sau dimensiunea eşantionului, adică cât de mare trebuie să fie n din N; acest lucru se realizează pe baza determinării fracţiunii de eşantionaj • Nominalizarea unităţilor statistice, ce vor face parte din eşantion: - Pas de numărare - Selectare tip LOTO - Tabele cu numere aleatoare - EŞ trebuie să fie validat - Generalizarea datelor pe baza IC

  18. Tipuri de eşantionaj • A – eşantion probabilistic (aleator) b) Eşantionul stratificat - Se foloseşte atunci când datele nu sunt dispuse aleatoriu, ci sunt clasate după anumite caracteristici . - Astfel în interiorul populaţiei de referinţă apar mai multe subpopulaţii, subpopulaţii care se numesc straturi. • - Caracteristic pentru un strat este omogenitatea internă şi neomogenitatea faţă de celelalte straturi din punctul de vedere al caracteristicii studiate. • - Alegerea criteriului de stratificare este foarte importantă

  19. Tipuri de eşantionaj A – eşantion probabilistic (aleator) c) Eşantionul în cuiburi (ciorchine) - Se foloseşte atunci când nu există bază de sondaj, sau atunci când întocmirea ei este greoaie sau costisitoare - Principiu: populaţia de investigat poate fi imaginată ca fiind alcătuită din unităţi de selecţie, agregate şi ierarhizate (gravidele – familie – colectivitate definită – cartier – comună – judeţ – ţară)

  20. Tipuri de eşantionaj A – eşantion probabilistic (aleator) • Etape de alcătuire a eşantionului în cuiburi (cuprinde 3 etape): 1. Baza de sondaj – lista cuiburilor (comune, familie) 2. Se extrag aleatoriu cuiburile care vor face parte din EŞ 3. Se investighează toate unităţile de observare din cuiburile extrase. Reprezentativitatea EŞ – este de preferat să fie studiate mai multe cuiburi de dimensiuni mici, decât puţine cuiburi de dimensiuni mari

  21. Tipuri de eşantionaj A – eşantion probabilistic (aleator) d) Eşantionul multistadial - se realizează mai multe extrageri - este utilizat pentru acele procese care implică teste chimice, fizice sau biologice, care pot fi efectuate într-o cantitate mai mică de produs, prin extragerea de subeşantioane dintr-o cantitate mai mare care este ea însăşi un eşantion. - Exemplu: ţară – judeţe – comune – familie – gravide sunt posibile următoarele extrageri Sondajul grad I – judeţele din judeţele selecţionate Sondajul grad II – comunele, din comunele selecţionate Sondajul grad III – familiile, din familiile selecţionate

  22. Tipuri de eşantionaj d) Eşantionul multistadial Baza de eşantionaj cuprinde toate gravidele din care se va face un nou sondaj Sondajul grad IV – care va genera eşantionul ce va fi efectiv investigat. - De obicei se foloseşte eşantionul bistadial sau tristadial.

  23. Tipuri de eşantionaj • B – Eşantion neprobabilistic, nealeator, empiric - Reprezentativitatea poate fi asigurată prin alegerea raţională a eşantionului de către cercetător - EŞ neprobabilistic nu implicăselecţia aleatoare, deci el nu se bazează pe teoria probabilităţilor, adică se poate ca populaţia să fie sau să nu fie bine reprezentată, dar acest lucru este greu de demonstrat. - În general se folosesc EŞ probabilistice Eşantion neprobabilistic – clasificare 1. Bazat pe convenţie – eşantionajul convenţional - unitatea de observaţie este omul de pe stradă - este folosit pentru a obţine în scurt timp opinia populaţiei (deşi nereprezentativă) - în practica clinică se pot utiliza ca EŞ – pacienţii care ne sunt disponibili

  24. Tipuri de eşantionaj 2. Eşantionajul bazat pe atingerea unui scop - Selecţia se face având un scop a) EŞ tipice (metoda unităţilor tip) Ex. o localitate este reprezentativă pentru situaţia unei zone b) EŞ experţilor c) Metoda cotelor - Este modalitatea cea mai utilizată în cadrul EŞ empiric - Reprezentativitatea constă în realizarea unui EŞ care să aibă o structură asemănătoare cu cea a populaţiei - Alegerea unităţilor statistice se realizează cum doreşte cercetătorul. Ex. I se dau fiecărui cercetător nr. şi caracteristicile persoanelor care trebuie investigate 60 femei din care: 20 – grupa de vârstă 15 – 19 ani 20 – grupa de vârstă 20 – 29 ani 20 – grupa de vârstă 30 – 39 ani lăsându-i libertatea de a le găsi (stradă, vecini) este o metodă care nu necesită prezenţa bazei de sondaj

  25. Tipuri de eşantionaj d) Eşantionul în“bulgăre de zăpadă” - Se identifică unităţile statistice (persoane) care îndeplinesc criteriile pentru a fi incluse în studiu. - Aceste persoane sunt apoi rugate să recomande alte persoane care îndeplinesc aceleaşi criterii - Câteodată este singura modalitate disponibilă (studiu persoanelor fără adăpost). - Această metodă asigură greu reprezentativitatea.

  26. Surse de erori în studiile pe eşantion • Există 3 surse de erori: • 1. Neinvestigarea unor unităţi statistice selecţionate în eşantion (non-răspuns) • 2. Erori din cauza aparaturii de măsură • 3. Erori introduse în procesele de editare, codificare, tabelare a rezultatelor

  27. Surse de erori în studiile pe eşantion • Soluţii de rezolvare a erorilor: 1. Scăderea procentajului de non-răspunsuri, printr-o pregătire a populaţiei şi a operatorilor de interviu. 2. Cunoaşterea unor caracteristici ale populaţiei “refractare” cu scopul de a le putea compara cu cele ale populaţiei care răspunde, urmărind să testăm dacă diferenţa dintre răspunsuri este semnificativă statistic. EŞ cu persoanele care nu au răspuns – de precizat cauzele 3. O soluţie recomandată - De a găsi un înlocuitor pentru fiecare non-răspuns - Listă de rezervă realizată tot prin extragere la sorţichiar din momentul începerii selecţiei Înlocuirile duc la realizarea volumului stabilit iniţial al EŞ, dar nu garantează precizia calculată, deoarece non-respondenţii nu vor fi niciodată asemănători cu înlocuitorii lor care au acceptat să participe la studiu.

  28. Surse de erori în studiile pe eşantion Volumul EŞ furnizează numărul de subiecţi de la care trebuie obţinută informaţia, şi nu numărul de subiecţicare trebuie selectaţi pentru studiu.

  29. Realizarea unui eşantion probabilistic (aleator) • Cuprinde 3 etape: 1. Baza de sondaj Reprezintă lista cu întreaga populaţie 2. Mărimea sau dimensiunea EŞ – pe baza fracţiunii de eşantionaj 3. Se nominalizează unităţile statistice ce vor face parte din EŞ: - pas de numărare - selectare tip LOTO - tabel cu numere aleatorii - EŞ trebuie validat. Generalizarea datelor - IC

  30. Avantajele unui eşantion probabilistic (aleator) • 1. Mai operativ, mai economic • 2. Se realizează într-un timp mai scurt • 3. Intervin erori de înregistrare mai puţin numeroase • 4. Este indispensabil când studiile totale nu se pot efectua • 5. Asigurarea unei reprezentativităţi a eşantionului şi a unei precizii Reprezentativitate – selecţie aleatoare Precizia EŞ – volumul EŞ

  31. Realizarea unui eşantion probabilistic (aleator)FRACŢIUNE DE EŞANTIONAJ Prevalenţa HTA = 15 % q = 0,05 → t = 1,96 N = 75.000 locuitori p = 0,15; q = 0,85 ∆ = 0,02

  32. BAZĂ DE SONDAJ Pas de numărare:K = ∆2 = eroarea limită sau eroarea maximă admisă σ2(varianţa) = P x Q P = 50 % Dacă nu mai avem nici o cercetare, adică nu-l cunoaştem pe P, Q = 50 % atunci se iau aşa zisele probabilităţi arbitrare.

More Related