440 likes | 550 Views
The price of energy security in depressed electricity markets; the case of Belgium. Prof.Dr . Johan Albrecht Faculteit Economie & Bedrijfskunde Second Summer School Economics of Electricity Markets 28/08/2014. Structure. The Belgian context
E N D
The price of energy security in depressed electricity markets; the case of Belgium Prof.Dr. Johan Albrecht Faculteit Economie & Bedrijfskunde Second Summer School Economics of Electricity Markets 28/08/2014
Structure • The Belgian context • ‘Security of supply’ has twodimensions: follow peak demand & avoidexcessiveoverproduction (intermittent RES) • ‘No Policy’ scenario; notsustainable • ‘Security of supply’ scenarios ; new assets, oldthermalassets, DSM & combinations • Surplus risk assessment • Conclusions
The Belgian Context • Firmcapacity of 15 700 MW (13 000 MW today) • Nuclearphase-out: 5 900 MW
Plan Wathelet • Extension Tihange 1, 800 MW CCGT, 400 MW DSM
Supply scenariosfor Belgium • Policy options; incentives forflexiblegeneration(new andoldtermal), DSM, CFD for RES (with/without Market Participation (MP)) • Investment and system cost of policy options? (with8% discount rate, LCOE-approach) • Assumptions on context; peak demand + 0,5%/yr, carbon price up to € 40 per ton CO2 in 2030, endogenousprice model (more RES -> lowerwholesaleprices), networkcostsincreasewith RES share
Security of supply; RM > 5% at alltimes • IF (‘No Policy’ RM < 5%) THEN model triggers CCGT, OCGT & Biomassinvestments • Context: oldthermal, DSM, BAU RES and High RES
Incentive schemes • Capacitypaymentsfor CCGT (€ 900/kW), OCGT (€ 700/kW) andBiomass (€ 1050/kW) • RES support per MWh (incl. Biomass) ; CFD = LCOE minusprice • CFD-MP includescurtailment (max 5% PV, max 14% wind) • CFD-MP; lower LF, higher LCOE, higher CFD
Old Thermal & DSM • end of 1 300 MW OT scheduledfor 2014-2024; in reserve capacity, 5% LF @ € 95/MWh (€ 50 to 60 mill) • DSM clearing prices of € 150/MW/day (based on UBS)
Firmcapacity in 2030; 18 GW / RM 9% Peak demand of 14,7 GW in 2030 Gas dominates / oldthermal; end of life in 2024 Biomass; 3 000 – 3 500 MW in BAU RES / 4 000 – 4 500 MW in High RES
Electricity production in 2030 CFD-MP; Biomassused in flexible way -> higher LF for CCGT Share of RES in 2030: from 28% in BAU RES CFD-MP to 60% in High RES CFD
Annualsubsidycost: cap pay + CFD • Allresults: additionaltosubsidycost of 2014 • One-off capacitypayments in year of investment
Cumulativecost up to 2030; € 21 and € 41 bill-> MP of RES matters!
Optimalframeworksand RES share? • Trade-off between RES share andcosts is notlinear
CumulativeSubsidyCosts & Cumulative System Costs (2014-2030)
Surplus risks? • Onlywith ‘New Capacity’ scenarios • Random PV & wind generation in Matlab (10 000 patterns), based on Elia • ‘Must-run’; biomass (MP), CHP & nuclear • Comparedtodemandvariation in 15 min intervals • Demand (15 min) <-> (RES + Must Run) • Export capacity of 3 500 MW; surplus of 3 000 is problematic • DSM (toincreasedemand); herenotincluded
Conclusions 2 • To secure 5% RM, cumulativesubsidycosts up to 2030 varybetween € 21 and € 41 billion • Smart policy choiceswilllowercostsfor society, even at relatively high RES shares • Market participationby RES is essentialtofacilitatefurtherexpansion of RES • DSM lowerscosts / Old thermal; limitedrelevance • limitations of this analysis; capacitypayments as institutionalchallenge (end of EOM?), recovery of demand, delocalisationenergy-intensiveindustries, evolution of interconnection, arrival of smart grid, share of electricvehiclesby 2030, EC climatepolicies,…
Thankyouforyour attention • Johan.albrecht@ugent.be • Second Summer School ‘Economics of Electricity Markets’ @ Ghent University, August 25-29, 2014 • http://www.ceem.ugent.be/SummerSchools/2014/index.htm