1 / 44

MIS 643 Agent-Based Modeling and Simulation (ABMS) Bertan Badur badur@boun.tr Department of

MIS 643 Agent-Based Modeling and Simulation (ABMS) Bertan Badur badur@boun.edu.tr Department of Management Information Systems Boğaziçi University. Model Analysis. Chapter 21-23, of Agent-Based and Individual-Based Modeling: A Practical Introduction , by S. F. Railsback and V. Grimm.

chin
Download Presentation

MIS 643 Agent-Based Modeling and Simulation (ABMS) Bertan Badur badur@boun.tr Department of

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MIS 643 Agent-Based Modeling and Simulation (ABMS) Bertan Badur badur@boun.edu.tr Department of Management Information Systems Boğaziçi University

  2. Model Analysis • Chapter 21-23, of Agent-Based and Individual-Based Modeling: A Practical Introduction,by S. F. Railsback and V. Grimm

  3. Outline • Chapter 21: Introduction to Part IV • Chapter 22: Analyzing and Understanding ABMs • Chapter 23: Sensitivity, Uncertainty and Robustness Analysis • Chapter 24:

  4. Chapter 21: Introduction to Part IV • 21.1 Objectives of Part IV • 21.2 Overview of Part IV

  5. 21.1 Objectives of Part IV • Testing – checking whether a model or submodel is correctly implemented and does what itis supposed to do • Analysing a model: trying to understand what amodel does • Understanding not automatic • from begining of modeling cycle • sukbmodels or simple models • POM for sturucture, theory calibration • Full models • frase design at some point • understand how it works and behave

  6. not too soon • once the model • key processes • represent real system reasonably • version number • two or three versions is likely • Programming and testing easy • What is science? • relation between model and real system – POM Part III • analyse throughly – what it does • simlfy or extend by adding new elements • formulation few days, analysing months yearns

  7. 21.2 Overview of Part IV • Chapter 22 • general strategies of analyzing ABMs • specific to ABMs • structural richness and realism • through controled simulation experiments • change assuptions submodels ... • Chapter 23 • sensitivity, uncertainty and robustness Sensitivity, Uncertainty and Robustness Analysis

  8. Chapter 22: Analyzing and Understanding ABMs • 22.1 Introduction • 22.2 Example Analysis: The Segregation Model • 22.3 Additional Heuristics for Understanding ABMs • 22.4 Statistics for Understanding • 22.5 Summary and Conclusions

  9. 22.1 Introduction • controlled experments • varying one factor at a time – efeects on results • establishng causal relationships – understanding how the results are affected by each factor • Scientific method – reproducable experiments • compleatly dercribing the model - lab or field • documenting • parameter values- input data- initial conditions • anaylsing results of experments

  10. controlled simulation experiments • design, test and calibrate - models • understanding and analyzing what models do • How to analyse • model, the system and questions addressed, • experience and problem solving heuristics • Heuristics or rule of tumbs • often usefull but not always • not unscientific

  11. learning objectives • Understan purpose and goals of analyzing full AMBs • finished or preliminary • ten heuristics • statistical anaysis for ABMs

  12. 22.2 Example Analysis: The Segregation Model • ODD • purpose • entities, state variables and scales • turtles – households • loaction, heppyness • houses - patches • space 51*51 • time • stop – all heppy

  13. Processes • if all happy stop • far all aent • if lo limit move • update heppyness • produce output

  14. submodels • move • update

  15. Analysis

  16. Heukristic: try extream values of parameters • model outcomes is often easy to predict or understand • Set tolernce low • Set tolarance high

  17. Heuristics: findtipping points in model behavior • qualitatively diferent behavior at extream values of parameters • vary the parameter try to find “tipping point” • the parameter range – model behavior suddenly changes • regiems of control • process A after some point process B may dominent

  18. Heuristics • try different visual representations of the model • color size patches • run the model step by srep • look at striking or strange patterns • at interesting points keep the parmeter and vary other parameters

  19. 22.3 Additional Heuristics for Understanding ABMs • use several “currencies” for evaluating your simulation experiments • analyze simplified version of your model • analyze from the buttom up • explore unrealistic senarios

  20. Heuristics: use several “currencies” for evaluating your simulation experiments • ABMs are rich in structure • “currincies” summary statistics or observations • emprical measures in the real system • Ex: population modeling • measure – population size wealth • analyze time series of population size • even mena or range • good currincies – observation in ODD design concept • several currincies – how sensitive they are

  21. statistical distributions • mean standard deviation, range • distribution – normal, exponential • characteristics of time series • trend, autocorrolation time units to reach a state • measures of spatical distributions • spatial autocorrelation, fractile dimension • measures of difference among agents • how some charcetristics different, distributions • stability properties • network characteristics • clustering coefficient, degree

  22. Heuristics: analyze simplified version of your model • simplfy • ABM so many foctors affect output • reduce complexity • undertand what mechnizms what cause what results • make the environment constant • make space homogenuous • all patches same over time • reduce stocasticity • fixed initial conditions – all agent alike • insteaad of randomness use mean values • reduce the system size • turn off some actions in model schedule • manually create simplified initail configrations

  23. Heuristics: analyze from the buttom up • ABMs hard to understand • behavior of its parts – agents and their behavior • first test and undertsnd these • then full model • anaysis of submodels • developing theory for agnet bahavior

  24. Heuristic: explore unrealistic senarios • simulate senarios – never occur in reality • to see direct effect of a process or mechanizm on resutls – remove it • Ex 2: How investor behavior affects double –auction markets • interesting contrast: • models – unrealistically simple investor behavior • produce system level results not so unrealistic • conclusion • complex agent behavior – not reasn for complex market dynamics • market rules themselfs might be important

  25. 22.4 Statistics for Understanding • statistics – analysis and understanding • infer causal relatinships from a limited and fixed data • ABM – • generates as much data aa possible • additional mechnizms • if cannot explain • add new mechanizms • change assuptions • purpose and mind-set of • statistics and simulation modeling • are quite different

  26. summary sttistics • aggregagting model outputs - mean, standard deviation • extream values might be importnat so outliers are usefull • Contrasting senarios • detect and quantify differences between senarios • assumptions may affect resutls – number of treatments • easier to change assuptions • t test ANOVA

  27. Quantifying correlative relationships • regression ANOVA • statistical relationsships between inputs – outputs • inputs: paramerters, initial conditions, time series • not directly idenfy causal relations • but idenfity relavant factors • meta-models • Comparing model outputs to emprical patterns

  28. 22.5 Summary and Conclusions • combin • reasoning, strong inference, systematic anaysis, intiution and creativity • once build an ABM or freeze it • understand what is does – controlled simulation experiments • heuristics • publications • heuristics in figure 22.3 • add your own

  29. Chapter 23: Sensitivity, Uncertainty and Robustness Analysis • 23.1 Introduction and Objectives • 23.2 Sensitivity Analysis • 23.3 Uncertainty Analysis • 23.4 Robustness Analysis • 23.5 Summary and Conclusions

  30. 23.1 Introduction and Objectives • Does an ABM reproduce observed patterns robustly • or sensitive to change in model • parameter • structure • how uncertain are model results • if model reproduce patterns foır • parameters – limited range or values • key processes are modelsed one exact way • unlikely to capture real mechanizm underlying hhe patterns

  31. Basic Definitions • Sensitivity analysis (SA) exokıres how sensitive model’s outputs are to changes in parameter values • Uncertainty Analysis (UA) looks at how uncertainty in parameter values affect the relaibility of model results • Robustness analysis (RA) explores robustness ofresults and conclusions of a model to changes in its structure

  32. Learning objectives • local SA with BehavioSpace • visualizations – SA with several parameters or global SA • stamdard UA methods with BehaviorSpace • steps of conducting RA

  33. 23.2 Sensitivity Analysis • to perform SA • full version of the model • “reference” parameter set • one or two key outputs • controled simulation conditions

  34. 23.2.1 Local Sensitivity Analysis • Objective – how sensitive the model • currency seleced • parameters one at a time • usually all parameters • Steps • range of parameter – +or-5% • run model for reference P and p-dP p+dp – replicate • mean C values • calculate sensitivity – approximatins to partial derivative

  35. Three types of parameters • high values of S • processes imortant in the model • high value of S and highuncertrainty in reference valus • little information to estimate their values • special attantion as calibration • target of emprical research to reduce uncertainty • low values of S • relatively unimportant processes - removable

  36. Alternatives • only positive change • C’/C absolugtechange • distibuton of C – variance • diferent values of P • rgression of C on P

  37. Limitations • linear response so parameter change is small • parameter interractios missing • around reference parameter set

  38. 23.2.2 Analysisof Parameter Interractions via Countour Plots • contour plots – interractions of two parameters • all other parameters are kept constant • Multi-panel contour figures – model sensitivity • many parameters at onces

  39. 23.2.3 Global Sensitivity Analysis • vary all parameters over their full range • look at several currencies - understanding • “brute force” - analysis • for each parameter several values • replicaitons • hard to measure currencies • regression analyis – respose surface methods • design of simulation experiments • not all combination of parameters

  40. 23.3 Uncertainty Analysis • similar to SA but • to understand how • the uncertainty in parameter values and • model’s sentitivity to parameters • interract to cause uncertainty in model results • parameters – measurment errors • steps of a UA • identify the parameters • for each parameter – define a distribution • belief or measurment errors • run the modelmany times – drawing from distributions • analyze distribution of model results

  41. 23.4 Robustness Analysis • Weisberg (2006) • Whether the results depends on the • esentials of the model or • details of the simplfying assuptions • study number of distinct similar models of the same phenomena • despte different assumptions – similar results • robust theorm - free of details of the model • modeling, POM • robust explanations of observed patterns

  42. A full model – frozen • two heuristics: • analyze simplified versions • explore unrelistic senarios • more complex versions • General steps of RA • start with a well tested model version • which elements to modify • test modified model – reproduce observed patterns

  43. theory development – agent behavior • testing alternative submodels • RA • testing alternative versions • 23.4.1 Example: Robustness Analysis of the Breeding Synchrony Model • left as an exercise

  44. 23.5 Summary and Conclusions

More Related