210 likes | 372 Views
Setup. A DFT Study of Tetragonal Rocksalt Proxy Copper Monochalcogenide Structures: -- Implications for Possible High-Tc Superconductivity --. Paul M. Grant W2AGZ Technologies Robert H. Hammond Stanford University. Session Y47 Theory of Strongly Correlated Superconductivity
E N D
A DFT Study of Tetragonal Rocksalt Proxy Copper Monochalcogenide Structures: -- Implications for Possible High-Tc Superconductivity -- Paul M. Grant W2AGZ Technologies Robert H. Hammond Stanford University Session Y47 Theory of Strongly Correlated Superconductivity 8 AM – 11 AM, Friday, 7 March Paper 8 9:24 AM – 9:36 AM Mile High Ballroom 4F
– Our Computational Tool Box – • DFT + Hubbard U • Quantum Espresso • Bands, Fermiologies, States (DOS), Phonons • Graphics • Xcrysden, XMGRACE • Bandwidths, Fermi Surfaces, Projected DOS • Modeling • Neel Temperatures a la Van Vleck/Anderson/Hubbard • Superconductivity via Eliashberg/McMillan
The Various Flavors of Copper “Monoxide” • Siemons, et al. (2009) • Grant (2008) • Franchini Group (2011) • Cococcioni Group (2011) tet-rs-CuO “1-2-3” Relative Ground State Energies Tennorite Can we compute/synthesize the S, Se, Te analogues ...and what would be their physical properties wrt magnetism and superconductivity? “Configuration/Coordination Space”
Rocksalt af-CuX Crystallography nm-Translational Unit Cell af-Primitive Cell Cu (Blue) Cu (Bronze, Green) Brillouin Zone X (Red) X (Red) “U” Note: The af-”translationally asymmetric unit” contains two Cu ions to correctly represent the doubly-periodic spin up/down ordering
CuX (Cubic, Equilibrium Lattice Constant(s)) CuS (a ≈ 4.7 Å) CuO (a ≈ 4.1 Å) CuSe (a ≈ 5.0 Å) CuTe (a ≈ 5.3 Å)
He I UPS Spectrum W. Siemons (PhD Thesis, Stanford) EF What Does Experiment Say About Rocksalt CuO? It’s Tetragonal(!) for 4-6 monolayers forced-epi grown on STO yielding a film with lattice constants a = b = 3.905 Å, and c/a ≈ 1.3, representing a 5% basal-plane contraction down from pure cubic having a = b = c = 4.1 Å. (Siemons, et al, PRB 79, 195122 (2009)) N(E) (eV-1) E (eV) See Fig. 9 in Grant, IOP-CS 129, 012042 (2008)
CuX (Tetragonal) CuO (a = b ≈ 3.9 Å; c/a ≈ 1.3) CuS (a = b ≈ 4.5 Å; c/a ≈ 1.1) (Assuming a 5% contraction of the a, b lattice constants a la CuO on STO) CuTe (a = b ≈ 5.05 Å; c/a ≈ 1.1) CuSe (a = b ≈ 4.75 Å; c/a ≈ 1.1)
Tet-rs CuX U= 6 CuS CuO CuSe CuTe
All Tet All U=6 CuO CuS CuTe CuSe
Van Vleck /Anderson/Hubbard Model of Neél Temperature Take the definition of “Exchange Energy” from Anderson (1959): where tijis the transfer integralfrom the spin states on one TM ion, directly to a neighbor, or through an intervening anion, and U is the on-site Hubbard coulomb repulsion potential, e.g., Now, “plug into” Van Vleck (1938-42), within the “molecular field approximation,” to get TN: Here S is the net cationic spin and kB the Boltzmann constant (8.61733•10-5 eV/°K). The “transfer integrals” are given by, where the ϕ’s are the “spin carrying” orbitals and H a “tight-binding-like Hamiltonian.”
Néel Temperature vs. TMO ? Tet-CuO TN (K) From Kittel Tenorite
Tet-rs-CuO Bandwidths, wi,j (eV) a = b = 3.9 Å c/a = 1.3 S = 0.5 U = 6.0 eV (1) 2.02 2.04 (2) (3) 1.47 °K (1) 494 (2) 501 (3) 261 (4) 360 (4) 1.73 °K 1+2 = 994 2+3 = 762 1+2+3 = 1255 ?
Néel Temperature vs. TMO ? Tet-CuO (1+2) Tet-CuO (2+3) TN (K) From Kittel Tenorite
Tet-rs-CuS Bandwidths, wi,j (eV) a = b = 4.5 Å c/a = 1.1 S = 0.5 U = 6.0 eV 2.92 (1) (2) 3.58 (3) 3.27 °K (1) 1030 (2) 1551 (3) 1292 • 1659 • 1436 (4) 3.70 (5) 3.45 Such high values of TN most likely reflect a breakdown of the simple tight-binding VVAH model when “X” > “O” in CuX
The Colossal Quantum Conundrum T “Real Metal”“Fermi Liquid” Superconductivity “Funny Metal”“Pseudogap”“Fond AF Memories” “SDW”“NEEL”“A-F” “Funny Metal”“Pseudogap”“Fond AF Memories” g* “Insulator” “Conductor” g U~U0 {1 - (g/g*)2}1/2 U = 3 U = 6 U = 0 Somewhere in here there has to be “BCS-like” pairing! Perhaps phonon-mediated?
How about superconductivity in the “U = 0, Fermi Liquid” limit for doped proxy tet-CuO? eV G Z K U K Y
So let’s do it and “compute” what happens! q = 0.15 |e|/CuO (holes) q = -0.15 |e|/CuO (electrons) ≈ 25 °K ≈ 43 °K Apply DFT to obtain between electrons and phonons, followed by application of the Eliashberg-McMillan-Allen-Dynes formalism to find Tc:
Can We Really Make Any of This Stuff? • Forced-epitaxial thin film growth is obvious choice (as it was with tet-CuO. Substrate selection likely limited, but here are possible choices: • CuS (4.7 Å) RocksaltZnO (4.580 Å, ~3% compression) • Rutile TiO2 (4.591 Å, ~2.5% compression) • CuSe (5.0 Å) Hex Al2O3 (4.748 Å, ~5% compression) • CuTe (5 .3 Å) Cubic ZrO2 (5.147 Å, ~5.3% compression) • YSZ (5.13 – 5.23 Å, ~3.5% compression max) • CaF (5.46 Å, ~3% expansion) • Methodologies • MBE - PLD: • Use appropriate sintered sample source. • Empirically determine optimum substrate temperature and argon pressure. • Characterize growth and structure via in-situ “high pressure compatible” RHEED, XPS, UPS, LEED. • External characterization, depending on stability in air: • 4-probe transport. • UV-Vis optical transmission and reflectivity.
The Bottom Line(s) • For X = S, Se and Te, neither a finite U or a “5% basal” tetragonal distortion has much effect on their respective CuX Fermiologies, and likely transport/magnetic properties dependent thereon. • However, the respective Fermi surfaces ...may...may... contain nesting topologies promoting itinerant antiferromagnetism a la Cr, but, unlike Cr, here for X = S, Se, Te, the DOS at Ef is dominated by p-like chalcogenide overlap. • Future homework for proxy structure modeling, suggested by preliminary results on “doped” tet-CuO: Let’s look for electron-phonon mediated superconductivity! • But ...most importantly... experiment always rules. Our fundamental computational finding is that equilibrium rocksalt CuS, CuSe and CuTe structures can in principle exist ...so let’s try to make and dope them and henceforth measure their properties! Finally, there is something quite special about the Cu-O bond in square-planar symmetry! ...but we knew that already... in 1986 B & M told us so!