350 likes | 447 Views
Plate Kinematic Reconstruction and Restoration via Fractal Error Minimization. Rex H. Pilger, Jr. Highlands Ranch, Colorado. What’s the problem?. Current “standard” models: Plate-to-plate Great circle approximations of spreading and fracture zone segments
E N D
Plate Kinematic Reconstruction and Restoration via Fractal Error Minimization Rex H. Pilger, Jr. Highlands Ranch, Colorado
What’s the problem? • Current “standard” models: • Plate-to-plate • Great circle approximations of spreading and fracture zone segments • Fit to chron and fracture zone crossings, stationary and rotated • Plate-to-hotspot • Pacific (single plate): spline-parameterized loci • Atlantic/Indian (multiple plates): Great circle approximations of trace loci • Fit to average or oldest dates from inferred hotspot traces
Plate-to-hotspot models Hawaii: paradigmatic hotspot How to evaluate fits… Hotspotting”TM” restoration
Plate-to-hotspot: “hotspotting” • How to evaluate fits… • Hotspotting”TM” restoration “TM” Wessel and Kroenke (1997)
Hotspotting – Hawaiian reference frame Loci: +/- 5 my Hawaiian-Emperor Hawaii Orange <= 48 Ma Green> 48 Ma* *47-48 Ma: Age of Hawaiian - Emperor Bend
Hotspotting – Hawaiian reference frame Orange <= 48 Ma Green> 48 Ma Cook Macdonald
Hotspotting – Hawaiian reference frame Orange <= 48 Ma Green> 48 Ma Foundation Samoa Easter Orange <= 25 Ma Blue > 25 Ma* *25 Ma: Nazca and Cocos plates form from Farallon plate
Hotspotting – Tristan reference frame Tristan-St. Helena Kerguelen-Reunion
Hotspotting – Tristan Reference Frame Great Meteor-Canary Tasman
Hotspotting – Tristan Reference Frame Oldest dates East Australia East Africa Youngest dates (!)
Hotspotting – Tristan reference frame Caribbean Arcs to Tristan
Another approach: fractal measures 1 19 5 3 11 38
Fractal measure: reduced by restoration 13 2 1 7 4 2
Plate reconstructions: Monte Carlo Monte Carlo “trial and error” Linearly “random” Equal area cells, equatorially-centered for each restored trace Sum of fractal counts over range of delta-spacing for each realization Five percent variation in total rotation pseudovectors & asymmetry 50,000 realizations Retain minimum sum of restored hotspot date cells
Plate Reconstructions • Australia-Antarctica • Isochron crossings1 • Background gravity field2 1Cande & Stock, 2004 2Sandwell & Smith, 1997
Plate reconstructions - Australia-Antarctica Reconstruction parameters: Spline-interpolated pseudovectors “Half” total rotations If spreading was symmetric, reconstructions should produce tight “linear” clustering
Plate reconstructions - Australia-Antarctica • Assuming symmetrical spreading, divergent clusters indicate asymmetrical spreading or ridge-jumping
Plate reconstructions – cell counting Equal area cells Sum of fractal counts over range of delta-spacing for each realization
Plate reconstructions Fractal Count: Fine Fractal Count: Coarse
Plate reconstructions: Monte Carlo Monte Carlo “trial and error” Linearly “random” Five percent variation in total rotation pseudovectors & asymmetry 40,000 realizations (6 hrs on 2 Core, 2.40 GHz, 4GB RAM) Retain minimum sum of restored chrons and fracture zones cells
Plate reconstructions – “final” • “Best fit”: Minimum summed fractals • Realization 35,261 of 40,000 • Sequence of minimum interations: • 0, 343, 464, 2468, 4751, 4912, 9025, 18497, 25793, 26613, 32105, 32298, 32476, 35261
Plate Reconstructions – “final” • Tighter clustering of chrons
Plate reconstructions – comparison • Initial: Yellow, orange, green • “Final”: Red, pink, blue
Plate reconstructions – comparison • Initial: Yellow, orange, green • “Final”: Red, pink, blue
Why fractals? • A Google Search (10/25/2010) for “fractals” produces 6,780,000 results However, very few if any of these articles recognize that: • Within an iterative, scaling process fractals “maximize information entropy” with respect to persistent information content • That is, following Jaynes’ principle: • Across a range of scales maximizing: • F = –S pn log pn – l0(S pn – 1) – Slk(Ek (p,x) – <Ik>) • Produces Mandelbrot’s fractal equation: • N = a x –d • Application: Parameters for minimum sum of fractals, producing maximum entropy scaled solution
What’s next… • Plate-to-plate • More iterations for Monte Carlo • Apply to full data sets • Introduce uncertainties • Provide pseudo-gradients for iterative solutions, instead of Monte Carlo • Plate circuits with uncertainties • Plate-to-hotspot • Incorporate plate-to-plate results • Include uncertainties • Pseudo-gradients for iterative solutions, instead of Monte Carlo • Hotspot & plates to paleomagnetic models
Virtual worlds • GoogleEarth, World Wind, Bing… • Three roles: • Evaluating reconstruction models with data, especially if tied to “real-time” calculations • Presentations like this • Exchanging data (e.g., via xml) • Raw • Interpreted • Meta (via embedded hyperlinks)
Key references • Plate reconstruction methods: • Pilger, 1978, Geophys. Res. Lett., 5, 469-472. • Hellinger, 1981, J. Geophys. Res., 86B, 9312-9318. • Wessel & Kroenke, 1997, Nature, 387, 365-369. • Maximum Entropy: • Jaynes, 1957, Phys. Rev., 106, 620-630. • Fractals: • Mandelbrot, 1967, Science, 156, 636-638. • Maximum entropy and fractals: • Pastor-Satorras & Wagensberg, 1998, Physica A, 251, 291–302. • SE Indian Ocean magnetic isochrons (digitized from map): • Cande & Stock, 2004, Geophys. J. Int., 157, 399-414.
RIP Edwin Jaynes July 5, 1922 – April 30, 1998 Benoit Mandelbrot November 20, 1924 – October 14, 2010