300 likes | 335 Views
Chapter 6: Mechanical Properties. ISSUES TO ADDRESS. • Stress and strain : What are they and why are they used instead of load and deformation?. • Elastic behavior: When loads are small, how much deformation occurs? What materials deform least?.
E N D
Chapter 6: Mechanical Properties ISSUES TO ADDRESS... • Stress and strain: What are they and why are they used instead of load and deformation? • Elastic behavior: When loads are small, how much deformation occurs? What materials deform least? • Plastic behavior: At what point does permanent deformation occur? What materials are most resistant to permanent deformation? • Toughness and ductility: What are they and how do we measure them?
Elastic Deformation 1. Initial 2. Small load 3. Unload bonds stretch return to initial d F F Linear- elastic Non-Linear- elastic d Elastic means reversible!
Plastic Deformation (Metals) 1. Initial 2. Small load 3. Unload bonds p lanes stretch still & planes sheared shear d plastic d elastic + plastic F F linear linear elastic elastic d d plastic Plastic means permanent!
Engineering Stress • Tensile stress, s: • Shear stress, t: F F F t t Area, A F s Area, A F s F t F F t s F t = F lb N t s = A = f or o 2 2 in m A o original area before loading Stress has units: N/m2 or lbf/in2
Common States of Stress F F A = cross sectional o area (when unloaded) F = s s s A o M F s A o A c F s = t A o M 2R • Simple tension: cable Ski lift(photo courtesy P.M. Anderson) • Torsion (a form of shear): drive shaft Note: t = M/AcR here.
Engineering Strain d /2 d L e = e = L L w L o w o o o d /2 L g = Dx/y= tan q • Tensile strain: • Lateral strain: - d • Shear strain: q x y 90º - q Strain is always dimensionless. 90º Adapted from Fig. 6.1 (a) and (c), Callister 7e.
• Typical tensile specimen Adapted from Fig. 6.2, Callister 7e. specimen extensometer gauge length Stress-Strain Testing • Typical tensile test machine Adapted from Fig. 6.3, Callister 7e. (Fig. 6.3 is taken from H.W. Hayden, W.G. Moffatt, and J. Wulff, The Structure and Properties of Materials, Vol. III, Mechanical Behavior, p. 2, John Wiley and Sons, New York, 1965.)
F • Hooke's Law: s = Ee s E F e simple Linear- tension test elastic Linear Elastic Properties • Modulus of Elasticity, E: (also known as Young's modulus)
eL e e n - L n = - e Poisson's ratio, n • Poisson's ratio, n: metals: n ~ 0.33ceramics: n~ 0.25polymers: n ~ 0.40 Units: E: [GPa] or [psi] n: dimensionless • > 0.50 density increases • < 0.50 density decreases (voids form)
Mechanical Properties • Slope of stress strain plot (which is proportional to the elastic modulus) depends on bond strength of metal Adapted from Fig. 6.7, Callister 7e.
Other Elastic Properties M t G simple torsion test g M P • Elastic Bulk modulus, K: P P P D V D V P = - K V o V pressure test: Init. vol =Vo. Vol chg. = DV K o • Special relations for isotropic materials: E E = = K G 3(1-2n) 2(1+n) • Elastic Shear modulus, G: t = Gg
Young’s Moduli: Comparison 1200 10 00 Diamond 8 00 6 00 Si carbide 4 00 Tungsten Carbon fibers only Al oxide Molybdenum Si nitride Steel, Ni C FRE(|| fibers)* 2 00 Tantalum <111> Si crystal Platinum A ramid fibers only Cu alloys <100> 10 0 Zinc, Ti 8 0 Silver, Gold A FRE(|| fibers)* Glass - soda Aluminum 6 0 Glass fibers only Magnesium, G FRE(|| fibers)* 4 0 Tin Concrete GFRE* 2 0 CFRE * G FRE( fibers)* G raphite 10 8 C FRE( fibers) * 6 AFRE( fibers) * Polyester 4 PET PS Epoxy only PC 2 PP HDP E 1 0.8 0.6 Wood( grain) PTF E 0.4 LDPE 0.2 Graphite Ceramics Semicond Metals Alloys Composites /fibers Polymers E(GPa) Based on data in Table B2, Callister 7e. Composite data based on reinforced epoxy with 60 vol% of aligned carbon (CFRE), aramid (AFRE), or glass (GFRE) fibers. 109 Pa
Plastic (Permanent) Deformation (at lower temperatures, i.e. T < Tmelt/3) • Simple tension test: Elastic+Plastic at larger stress engineering stress, s Elastic initially permanent (plastic) after load is removed ep engineering strain, e Adapted from Fig. 6.10 (a), Callister 7e. plastic strain
Yield Strength, sy s tensile stress, sy e engineering strain, e = 0.002 p • Stress at which noticeableplastic deformation has occurred. when ep = 0.002 y = yield strength Note: for 2 inch sample = 0.002 = z/z z = 0.004 in Adapted from Fig. 6.10 (a), Callister 7e.
Yield Strength : Comparison Graphite/ Metals/ Composites/ Ceramics/ Polymers Alloys fibers Semicond 2 0 00 qt Steel (4140) 10 00 a Ti (5Al-2.5Sn) W (pure) (MPa) 7 00 6 00 cw Cu (71500) 5 00 Mo (pure) a Steel (4140) 4 00 cd y Steel (1020) s , 3 00 ag Al (6061) hr Steel (1020) 2 00 ¨ a Ti (pure) Ta (pure) Hard to measure, hr Cu (71500) Hard to measure in tension, fracture usually occurs before yield. in ceramic matrix and epoxy matrix composites, since since in tension, fracture usually occurs before yield. 100 dry Yield strength, 70 PC 60 Nylon 6,6 a Al (6061) PET 50 humid PVC 40 PP 30 H DPE 20 LDPE Tin (pure) 10 Room T values Based on data in Table B4, Callister 7e. a = annealed hr = hot rolled ag = aged cd = cold drawn cw = cold worked qt = quenched & tempered
TS F = fracture or ultimate strength Neck – acts as stress concentrator y stress engineering Typical response of a metal strain engineering strain Tensile Strength, TS • Maximum stress on engineering stress-strain curve. Adapted from Fig. 6.11, Callister 7e. • Metals: occurs when noticeable necking starts. • Polymers: occurs when polymer backbonechains are aligned and about to break.
Graphite/ Metals/ Composites/ Ceramics/ Polymers Alloys fibers Semicond 5000 C fibers Aramid fib 3000 E-glass fib 2000 qt Steel (4140) (MPa) A FRE (|| fiber) 1000 Diamond W (pure) GFRE (|| fiber) a Ti (5Al-2.5Sn) C FRE (|| fiber) a Steel (4140) cw Si nitride Cu (71500) hr Cu (71500) Al oxide Steel (1020) 300 ag Al (6061) a Ti (pure) 200 Ta (pure) a Al (6061) Si crystal wood(|| fiber) 100 <100> strength, TS Nylon 6,6 Glass-soda PET PC PVC GFRE ( fiber) 40 Concrete PP C FRE ( fiber) 30 A FRE( fiber) H DPE Graphite 20 L DPE 10 Tensile wood ( fiber) 1 Tensile Strength : Comparison Room Temp. values Based on data in Table B4, Callister 7e. a = annealed hr = hot rolled ag = aged cd = cold drawn cw = cold worked qt = quenched & tempered AFRE, GFRE, & CFRE = aramid, glass, & carbon fiber-reinforced epoxy composites, with 60 vol% fibers.
Ductility - L L = x 100 f o % EL L o smaller %EL E ngineering tensile Ao s stress, Lo larger %EL Af Lf e Engineering tensile strain, - A A • Another ductility measure: = o f % RA x 100 A o • Plastic tensile strain at failure: Adapted from Fig. 6.13, Callister 7e.
Toughness small toughness (ceramics) E ngineering tensile large toughness (metals) s stress, very small toughness Adapted from Fig. 6.13, Callister 7e. (unreinforced polymers) e Engineering tensile strain, • Energy to break a unit volume of material • Approximate by the area under the stress-strain curve. Brittle fracture: elastic energyDuctile fracture: elastic + plastic energy
1 @ s e U r y y 2 Resilience, Ur • Ability of a material to store energy • Energy stored best in elastic region If we assume a linear stress-strain curve this simplifies to Adapted from Fig. 6.15, Callister 7e.
Elastic Strain Recovery Adapted from Fig. 6.17, Callister 7e.
apply known force measure size e.g., of indent after 10 mm sphere removing load Smaller indents d D mean larger hardness. most brasses easy to machine cutting nitrided plastics Al alloys steels file hard tools steels diamond increasing hardness Hardness • Resistance to permanently indenting the surface. • Large hardness means: --resistance to plastic deformation or cracking in compression. --better wear properties.
Hardness: Measurement • Rockwell • No major sample damage • Each scale runs to 130 but only useful in range 20-100. • Minor load 10 kg • Major load 60 (A), 100 (B) & 150 (C) kg • A = diamond, B = 1/16 in. ball, C = diamond • HB = Brinell Hardness • TS (psia) = 500 x HB • TS (MPa) = 3.45 x HB
Hardness: Measurement Table 6.5
True Stress & Strain Note: S.A. changes when sample stretched • True stress • True Strain Adapted from Fig. 6.16, Callister 7e.
s s large hardening y 1 s y small hardening 0 e hardening exponent: ( ) n n = 0.15 (some steels) s = e K T T to n = 0.5 (some coppers) “true” strain: ln(L/Lo) “true” stress (F/A) Hardening • An increase in sy due to plastic deformation. • Curve fit to the stress-strain response:
Summary • Stress and strain: These are size-independent measures of load and displacement, respectively. • Elastic behavior: This reversible behavior often shows a linear relation between stress and strain. To minimize deformation, select a material with a large elastic modulus (E or G). • Plastic behavior: This permanent deformation behavior occurs when the tensile (or compressive) uniaxial stress reaches sy. • Toughness: The energy needed to break a unit volume of material. • Ductility: The plastic strain at failure.