200 likes | 412 Views
6.3 Proving Quadrilaterals are Parallelograms. Standard: 7.0 & 17.0. Theorem 6.5: If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram. Theorems. ABCD is a parallelogram.
E N D
6.3 Proving Quadrilaterals are Parallelograms Standard: 7.0 & 17.0
Theorem 6.5: If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram. Theorems ABCD is a parallelogram.
Theorem 6.6: If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram. Theorems ABCD is a parallelogram.
Theorem 6.7: If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram. Theorems ABCD is a parallelogram.
Statements: AB ≅ CD, AD ≅ CB. AC ≅ AC ∆ABC ≅ ∆CDA BAC ≅ DCA, DAC ≅ BCA AB║CD, AD ║CB. ABCD is a Reasons: Given Ex. 1: Proof of Theorem 6.5
Statements: AB ≅ CD, AD ≅ CB. AC ≅ AC ∆ABC ≅ ∆CDA BAC ≅ DCA, DAC ≅ BCA AB║CD, AD ║CB. ABCD is a Reasons: Given Reflexive Prop. of Congruence Ex. 1: Proof of Theorem 6.5
Statements: AB ≅ CD, AD ≅ CB. AC ≅ AC ∆ABC ≅ ∆CDA BAC ≅ DCA, DAC ≅ BCA AB║CD, AD ║CB. ABCD is a Reasons: Given Reflexive Prop. of Congruence SSS Congruence Postulate Ex. 1: Proof of Theorem 6.5
Statements: AB ≅ CD, AD ≅ CB. AC ≅ AC ∆ABC ≅ ∆CDA BAC ≅ DCA, DAC ≅ BCA AB║CD, AD ║CB. ABCD is a Reasons: Given Reflexive Prop. of Congruence SSS Congruence Postulate CPCTC Ex. 1: Proof of Theorem 6.5
Statements: AB ≅ CD, AD ≅ CB. AC ≅ AC ∆ABC ≅ ∆CDA BAC ≅ DCA, DAC ≅ BCA AB║CD, AD ║CB. ABCD is a Reasons: Given Reflexive Prop. of Congruence SSS Congruence Postulate CPCTC Alternate Interior s Converse Ex. 1: Proof of Theorem 6.5
Statements: AB ≅ CD, AD ≅ CB. AC ≅ AC ∆ABC ≅ ∆CDA BAC ≅ DCA, DAC ≅ BCA AB║CD, AD ║CB. ABCD is a Reasons: Given Reflexive Prop. of Congruence SSS Congruence Postulate CPCTC Alternate Interior s Converse Def. of a parallelogram. Ex. 1: Proof of Theorem 6.5
Another Theorem ~ • Theorem 6.8—If one pair of opposite sides of a quadrilateral are congruent and parallel, then the quadrilateral is a parallelogram. • ABCD is a parallelogram. B C A D
Statements: BC ║DA DAC ≅ BCA AC ≅ AC BC ≅ DA ∆BAC ≅ ∆DCA AB ≅ CD ABCD is a Reasons: 1. Given Ex. 3: Proof of Theorem 6.8Given: BC║DA, BC ≅ DAProve: ABCD is a
Statements: BC ║DA DAC ≅ BCA AC ≅ AC BC ≅ DA ∆BAC ≅ ∆DCA AB ≅ CD ABCD is a Reasons: Given Alt. Int. s Thm. Ex. 3: Proof of Theorem 6.8Given: BC║DA, BC ≅ DAProve: ABCD is a
Statements: BC ║DA DAC ≅ BCA AC ≅ AC BC ≅ DA ∆BAC ≅ ∆DCA AB ≅ CD ABCD is a Reasons: Given Alt. Int. s Thm. Reflexive Property Ex. 3: Proof of Theorem 6.8Given: BC║DA, BC ≅ DAProve: ABCD is a
Statements: BC ║DA DAC ≅ BCA AC ≅ AC BC ≅ DA ∆BAC ≅ ∆DCA AB ≅ CD ABCD is a Reasons: Given Alt. Int. s Thm. Reflexive Property Given Ex. 3: Proof of Theorem 6.8Given: BC║DA, BC ≅ DAProve: ABCD is a
Statements: BC ║DA DAC ≅ BCA AC ≅ AC BC ≅ DA ∆BAC ≅ ∆DCA AB ≅ CD ABCD is a Reasons: Given Alt. Int. s Thm. Reflexive Property Given SAS Congruence Post. Ex. 3: Proof of Theorem 6.8Given: BC║DA, BC ≅ DAProve: ABCD is a
Statements: BC ║DA DAC ≅ BCA AC ≅ AC BC ≅ DA ∆BAC ≅ ∆DCA AB ≅ CD ABCD is a Reasons: Given Alt. Int. s Thm. Reflexive Property Given SAS Congruence Post. CPCTC Ex. 3: Proof of Theorem 6.8Given: BC║DA, BC ≅ DAProve: ABCD is a
Statements: BC ║DA DAC ≅ BCA AC ≅ AC BC ≅ DA ∆BAC ≅ ∆DCA AB ≅ CD ABCD is a Reasons: Given Alt. Int. s Thm. Reflexive Property Given SAS Congruence Post. CPCTC If opp. sides of a quad. are ≅, then it is a. Ex. 3: Proof of Theorem 6.8Given: BC║DA, BC ≅ DAProve: ABCD is a
Assignment • 324-5 # 1-9, 12, 14-18