1 / 20

6.3 Proving Quadrilaterals are Parallelograms

6.3 Proving Quadrilaterals are Parallelograms. Standard: 7.0 & 17.0. Theorem 6.5: If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram. Theorems. ABCD is a parallelogram.

christmas
Download Presentation

6.3 Proving Quadrilaterals are Parallelograms

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 6.3 Proving Quadrilaterals are Parallelograms Standard: 7.0 & 17.0

  2. Theorem 6.5: If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram. Theorems ABCD is a parallelogram.

  3. Theorem 6.6: If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram. Theorems ABCD is a parallelogram.

  4. Theorem 6.7: If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram. Theorems ABCD is a parallelogram.

  5. Statements: AB ≅ CD, AD ≅ CB. AC ≅ AC ∆ABC ≅ ∆CDA BAC ≅ DCA, DAC ≅ BCA AB║CD, AD ║CB. ABCD is a  Reasons: Given Ex. 1: Proof of Theorem 6.5

  6. Statements: AB ≅ CD, AD ≅ CB. AC ≅ AC ∆ABC ≅ ∆CDA BAC ≅ DCA, DAC ≅ BCA AB║CD, AD ║CB. ABCD is a  Reasons: Given Reflexive Prop. of Congruence Ex. 1: Proof of Theorem 6.5

  7. Statements: AB ≅ CD, AD ≅ CB. AC ≅ AC ∆ABC ≅ ∆CDA BAC ≅ DCA, DAC ≅ BCA AB║CD, AD ║CB. ABCD is a  Reasons: Given Reflexive Prop. of Congruence SSS Congruence Postulate Ex. 1: Proof of Theorem 6.5

  8. Statements: AB ≅ CD, AD ≅ CB. AC ≅ AC ∆ABC ≅ ∆CDA BAC ≅ DCA, DAC ≅ BCA AB║CD, AD ║CB. ABCD is a  Reasons: Given Reflexive Prop. of Congruence SSS Congruence Postulate CPCTC Ex. 1: Proof of Theorem 6.5

  9. Statements: AB ≅ CD, AD ≅ CB. AC ≅ AC ∆ABC ≅ ∆CDA BAC ≅ DCA, DAC ≅ BCA AB║CD, AD ║CB. ABCD is a  Reasons: Given Reflexive Prop. of Congruence SSS Congruence Postulate CPCTC Alternate Interior s Converse Ex. 1: Proof of Theorem 6.5

  10. Statements: AB ≅ CD, AD ≅ CB. AC ≅ AC ∆ABC ≅ ∆CDA BAC ≅ DCA, DAC ≅ BCA AB║CD, AD ║CB. ABCD is a  Reasons: Given Reflexive Prop. of Congruence SSS Congruence Postulate CPCTC Alternate Interior s Converse Def. of a parallelogram. Ex. 1: Proof of Theorem 6.5

  11. Another Theorem ~ • Theorem 6.8—If one pair of opposite sides of a quadrilateral are congruent and parallel, then the quadrilateral is a parallelogram. • ABCD is a parallelogram. B C A D

  12. Statements: BC ║DA DAC ≅ BCA AC ≅ AC BC ≅ DA ∆BAC ≅ ∆DCA AB ≅ CD ABCD is a  Reasons: 1. Given Ex. 3: Proof of Theorem 6.8Given: BC║DA, BC ≅ DAProve: ABCD is a 

  13. Statements: BC ║DA DAC ≅ BCA AC ≅ AC BC ≅ DA ∆BAC ≅ ∆DCA AB ≅ CD ABCD is a  Reasons: Given Alt. Int. s Thm. Ex. 3: Proof of Theorem 6.8Given: BC║DA, BC ≅ DAProve: ABCD is a 

  14. Statements: BC ║DA DAC ≅ BCA AC ≅ AC BC ≅ DA ∆BAC ≅ ∆DCA AB ≅ CD ABCD is a  Reasons: Given Alt. Int. s Thm. Reflexive Property Ex. 3: Proof of Theorem 6.8Given: BC║DA, BC ≅ DAProve: ABCD is a 

  15. Statements: BC ║DA DAC ≅ BCA AC ≅ AC BC ≅ DA ∆BAC ≅ ∆DCA AB ≅ CD ABCD is a  Reasons: Given Alt. Int. s Thm. Reflexive Property Given Ex. 3: Proof of Theorem 6.8Given: BC║DA, BC ≅ DAProve: ABCD is a 

  16. Statements: BC ║DA DAC ≅ BCA AC ≅ AC BC ≅ DA ∆BAC ≅ ∆DCA AB ≅ CD ABCD is a  Reasons: Given Alt. Int. s Thm. Reflexive Property Given SAS Congruence Post. Ex. 3: Proof of Theorem 6.8Given: BC║DA, BC ≅ DAProve: ABCD is a 

  17. Statements: BC ║DA DAC ≅ BCA AC ≅ AC BC ≅ DA ∆BAC ≅ ∆DCA AB ≅ CD ABCD is a  Reasons: Given Alt. Int. s Thm. Reflexive Property Given SAS Congruence Post. CPCTC Ex. 3: Proof of Theorem 6.8Given: BC║DA, BC ≅ DAProve: ABCD is a 

  18. Statements: BC ║DA DAC ≅ BCA AC ≅ AC BC ≅ DA ∆BAC ≅ ∆DCA AB ≅ CD ABCD is a  Reasons: Given Alt. Int. s Thm. Reflexive Property Given SAS Congruence Post. CPCTC If opp. sides of a quad. are ≅, then it is a. Ex. 3: Proof of Theorem 6.8Given: BC║DA, BC ≅ DAProve: ABCD is a 

  19. Assignment • 324-5 # 1-9, 12, 14-18

More Related