1 / 15

ACI_Dispo :

ACI_Dispo :. Réunion de travail du 10-05-2005. Frédéric Cuppens Ahmed Bouabdallah. Nora Cuppens-Boulahia. État d’avancement et perspective. Finalisé, Nomad : No n ato m ic a ctions and d eadlines Enrichissement futur envisagé En cours, Modélisation de la disponibilité

christmas
Download Presentation

ACI_Dispo :

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ACI_Dispo : Réunion de travail du 10-05-2005 Frédéric Cuppens Ahmed Bouabdallah Nora Cuppens-Boulahia

  2. État d’avancement et perspective • Finalisé, • Nomad : Non atomic actions and deadlines • Enrichissement futur envisagé • En cours, • Modélisation de la disponibilité • Protocole TCP/IP avec techniques de Syn Cookies • Avec Nomad • Identification des aspects pertinents (au sens AOP) • Expression de la disponibilité • Réseaux Ad-hoc

  3. Nomad • Provides means to specify a security policy • Conditional privileges • F(A|C) • P(A|C) • O(A|C) • Effective privileges • Expressed in a language of privileges with deadlines • Extends a logic of temporized actions with request • req, waiting • Extends a logic of temporized actions • start, doing, done, , , d and d • Provides means to specify non atomic privileges

  4. The axioms of classical propositional logic (A → B) → (A → B) (A → B) → (A → B) ¬  ¬A ↔ A ¬  ¬A ↔ A A ↔ A A ↔ A start() ↔ ||||done() start(; ) ↔ (start()  ||||done()) start( & ) ↔ (start() start ()) start( & ) ↔ ||||done( & ) if |||| ≥ |||| doing() ↔ (start() (doing()  ¬done())) (doing()  ¬done()) →  ¬start() Axiomatics of the logic of temporized actions

  5. Axiomatics of the logic of temporized actions with request • Axiomatics of logic of temporized actions • waiting() ↔ (req()  (waiting()  ¬ start()))

  6. Obligations with deadlines • Violation of obligations occurs usually after a deadline elapsed • Obligation modality • OdA = OdA • OA is an immediate obligation (d0) • Where dis defined • 0A = 0A = A • d0 : d+1A = dA • (d+1)A = dA (d+1)A • d0 : d1A = dA •  (d−1)A = dA  (d−1)A

  7. Conditional privileges • Most of privileges are only active in specific contexts • Diadic operators • O(A|C)  (C OA) • Od(A|C)  (C OdA) • F(A|C)  (C FA) • Fd(A|C)  (C FdA) • P(A|C)  (C PA) • Pd(A|C)  (C PdA) • Constraints • F(A|C ) ↔ O(¬A|C ) • (P(A|C ) C ) → ¬ F(A|C )

  8. Effective privileges • Conditional privileges and conditions satisfied effective privileges • FeA= (F(A|C) C) • PeA= (P(A|C) C) • OedA= (Od(A|C) C) (Oe(d+1)A ¬A) • Oe0A=OeA

  9. Expression of security properties in Nomad • Access Control requirement • Starting an action should be accepted Closed policy : d , d(start()  Pe(start()) Open policy : d , d(start()  Fe(start()) • Abiding with prohibition requirement • Generalizing access control properties d(A  FeA) • And obviously the absence of conflicts

  10. Violation condition • Fulfillment modality • fullfill(A)  OedA  A • Violation modality • violation(A)  OedA  A • Security property associated with obligation fulfillment • d(violation (A))

  11. Simple Nomad examples • Availability requirement O1D(start(open_account)|(exist_accountreq(open_account))) • User contract requirement O1H(done(open_account)|start(open_account)) • Repeated violation specification repeated_violation (violation(start(change_pwd)  O2D violation(start(change_pwd)))

  12. Decomposition of actions and privileges

  13. Decomposition of non atomic privileges • Example O(start(block_account; notify_repeated_violation)| repeated_violation) • Decomposition of immediate obligations • Decomposition of non atomic permissions • Decomposition of non atomic prohibitions • Decomposition of obligations with deadlines

  14. Decomposition of immediate obligations • Theorem of decomposition O(A  B|C)  O(A|C) O(B|C) • The semantics of temporized actions says • start(&)  start() start() • start(;)  start()  ||||start() •  O(start(&)|C) O(start() |C)  O(start() |C) •  O(start(;)|C) O(start() |C) O(||||start()|C) • Exemple of blocking account O(start(block_account) | repeated_violation)  O(||block_account||start(notify_repeated_violation) | repeated_violation)

  15. Decomposition of non atomic permissions • Theorems of decomposition P(A B|C)  P(A|C)P(B|C) P(A|C)O(B|C)  P(A  B|C) • From the semantics of temporized actions and the weaknessess of its direct application •  P(start( ; )|C)  P(start() |C) O(||||start() | (C start())) •  P(start( & )|C)  P(start() |C)  P(start() |C) O(start() |(C start())) O(start() |(C start())) • P(start(open_account ; change_pwd)|exist_account)  P(start(open_account) |exist_account) O(||open_account||start(change_pwd) |(exist_accountstart(open_account)))

More Related