1 / 46

Lecture 3

Lecture 3. Damping, Transients, Envelopes The Principle of Superposition Wave Reflection. Instructor: David Kirkby (dkirkby@uci.edu). Miscellaneous. I have added links to the PowerPoint presentation and a condensed printable version of each lecture to the course web site .

christophe
Download Presentation

Lecture 3

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lecture 3 Damping, Transients, Envelopes The Principle of Superposition Wave Reflection Instructor: David Kirkby (dkirkby@uci.edu)

  2. Miscellaneous • I have added links to the PowerPoint presentation and a condensed printable version of each lecture to the course web site. • My office hours are 9-11am Wednesdays in FRH 3182. • Problem Set #1 is due at the beginning of Thursday’s class. Physics of Music, Lecture 3, D. Kirkby

  3. Review of Lecture 2 • We did a quick survey of most of freshman physics: • Force and acceleration • Vector addition • Newton’s Second Law • Simple Harmonic Motion • Waves • We were able to cover so much material by focusing on the concepts rather than how to perform calculations and solve problems.You already know most of the material intuitively (eg, Crown Victoria vs. Mustang acceleration) Physics of Music, Lecture 3, D. Kirkby

  4. We studied 3 examples of Simple Harmonic Motion(SHM): • Mass on a horizontal spring • Pendulum (mass on a vertical string) • Uniform circular motion (eg, a mass on a horizontal string or the Earth circling the Sun) • SHM is a common feature of many different physical processes. • The SHM of a solid body generates sound waves with the same frequency and amplitude in the air surrounding it.Sound propagates as a longitudinal wave at about 345m/s. Physics of Music, Lecture 3, D. Kirkby

  5. Is Simple Harmonic MotionMusic ? Physics of Music, Lecture 3, D. Kirkby

  6. Listening to Simple Harmonic Motion • Listen to this example of a sound created by SHM. • Does it remind you of any musical instruments? • What aspects of the sound are “unnatural” or “unmusical”? Physics of Music, Lecture 3, D. Kirkby

  7. Towards Musical Sound • Here is a graphical representation of the sound you just heard: • This sound is lacking in two general areas: • it starts and stops abruptly with no “shape” to it • the “tone” is pure but unnatural (and uninteresting) Physics of Music, Lecture 3, D. Kirkby

  8. During today’s lecture we will learn what is needed to improve the sound in both of these areas: • Damping and transients give a sound its “shape”. • Vibrations that are more complex that SHM give a sound its musical tone. • The Principle of Superposition is a powerful tool for understanding these more complex vibrations in terms of SHM. Physics of Music, Lecture 3, D. Kirkby

  9. Sound Envelope • We call the shape of a sound its envelope.An envelope fits snugly around the maximum motion of the air particles (or a solid object undergoing SHM) and so tracks how the motion’s amplitude changes with time. • The SHM sound we heard earlier has a box-like envelope: …no change in volume… silence silence abrupt start abrupt stop Physics of Music, Lecture 3, D. Kirkby

  10. Envelope: Example 1 • Here are some examples envelopes for musical sounds: Physics of Music, Lecture 3, D. Kirkby

  11. Envelope: Example 2 Physics of Music, Lecture 3, D. Kirkby

  12. Envelope: Example 3 Physics of Music, Lecture 3, D. Kirkby

  13. What general features do these envelopes have in common? How are they different from SHM? gong marimba piano Physics of Music, Lecture 3, D. Kirkby

  14. Damping and Dissipation • The main feature missing from the SHM envelope is a gradual decay of the amplitude as the sound dies out. • This decay process is called damping. • Damping is present in most examples of SHM. It is usually the result of friction taking energy permanently away from the vibrations (dissipation). • Dissipation occurs in all physical processes. It is the reason why a ball will not bounce forever and why you have to keep pumping to keep a swing going. Physics of Music, Lecture 3, D. Kirkby

  15. Damping Examples • These online demonstrations compare the damped and undamped motions of: • a mass on a horizontal spring • a pendulum Physics of Music, Lecture 3, D. Kirkby

  16. Damping = Exponential Decay • Damping generally means that the amplitude of vibrations (ie, how loud the sound is) decreases by a fixed fraction per unit time: • Amplitude(now) = Fraction x Amplitude(before) • In this case, how long does it take for the sound to completely disappear? • If a quantity decreases by a constant fraction per unit time, then we say it obeys an exponential decay law. • The quantity can be anything (not just sound amplitude). Physics of Music, Lecture 3, D. Kirkby

  17. 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 100% 90% 53% 81% 73% 43% 66% 39% 59% 35% 48% 31% 1 1 Exponential Decay: Example 1 How do you make a candy bar last a long time? Try eating 10% of the candy every minute… Mins: 1 2 3 4 5 6 7 8 9 10 11… How many minutes until you finish the candy? Physics of Music, Lecture 3, D. Kirkby

  18. Exponential Decay Law • The progression of an exponential decay is described by a single number which we can choose to be the fraction that disappears per unit of time (eg, 10%/minute). • Another number we could choose is how long it takes for half to disappear. This was about 6.5 minutes in our example.Is it obvious that we will loose another half every 6.5 minutes? • The time taken for another half to disappear is called the half life of the decay. Physics of Music, Lecture 3, D. Kirkby

  19. Exponential Decay: Example 2 • Exponential decay is more general than dissipation, which is already very general.An example that has nothing to do withdissipation is radioactive decay where thenumber of radioactive particles in a samplefollows an exponential decay.This progression allows us to measure howlong ago a living organism died. This is theprinciple behind Carbon-14 dating (yourbody maintains a tiny constant amount ofradioactive carbon until you die). C-14 hasa half life of about 6000 years. Physics of Music, Lecture 3, D. Kirkby

  20. 100% 90% 53% 81% 73% 43% 66% 39% 59% 35% 48% 31% Sidebar on the Exponential Function • The mathematical function that describes exponential decay is: • N(t) = N(0) exp(- c t) The exponential function is not a straight line! Physics of Music, Lecture 3, D. Kirkby

  21. Transients • A transient is a brief burst of motion.Transients in physical systems are often the result of an explosive external disturbance.Examples: • A hammer used to start a horizontal spring in motion • The initial force required to start a trumpet player’s lips vibrating • Transients are not easy to describe mathematically, unlike Simple Harmonic Motion (cos,sin) or Damping (exp). Physics of Music, Lecture 3, D. Kirkby

  22. Transients in Musical Sounds • Look for transients in a musical sound at the beginning of its envelope: Transients! Physics of Music, Lecture 3, D. Kirkby

  23. Complex Vibrations • If we zoom in to examine a short segment of a musical sound, we discover that its vibrations are more complex than we expect from Simple Harmonic Motion: Physics of Music, Lecture 3, D. Kirkby

  24. The Principle of Superposition • In order to study these more complex vibrations, we will use a very powerful characteristic of all linear systems known as the Principle of Superposition (PoS): • The combined effect on a system’s motion of applying two disturbances at the same time is just the sum of the individual motions from each disturbance applied separately. Physics of Music, Lecture 3, D. Kirkby

  25. We can also express this mathematically (t is time): Result of disturbance B FA+B(t) = FA(t) + FB(t) Combined resultof disturbances A+B Result of disturbance A We say that the function F(t) describing the result of thedisturbance is a linear function. Physics of Music, Lecture 3, D. Kirkby

  26. Sidebar on Linear Functions • Linear functions all have the same general form: • F(t) = a + b t • Where a and b are two arbitrary parameters (numbers). • Most mathematical functions are non-linear.E.g., sin(2ft) , exp(-ct) • exp(1+1) = 7.389 exp(1) + exp(1) = 5.437 Therefore, exp(A+B)  exp(A) + exp(B) Physics of Music, Lecture 3, D. Kirkby

  27. Superposition: Example 1 • A glass of water is a trivial example of a linear system. • Disturbance A = pour in 1/4 of a glass • Disturbance B = pour in 1/2 of a glass • What is the result of the combined A+B disturbances? The glass is 3/4 full (!) Physics of Music, Lecture 3, D. Kirkby

  28. Most interesting physical systems are not exactly linear.Examples: • A water glass filled beyond its top • A spring compressed almost to zero • A spring stretched beyond its breaking point • These systems are described by non-linear functions.However, all systems are approximately linear for small enough disturbances!(Transients are usually due to momentary excursions beyond the range of linear disturbances.) Physics of Music, Lecture 3, D. Kirkby

  29. y(x) x Sidebar on Non-Linear Functions • Any reasonable mathematical function (including non-linear ones) is approximately linear when considered over a small enough region: Physics of Music, Lecture 3, D. Kirkby

  30. Superposition: Example 2 • A long rope provides a medium for transverse waves. • To keep things simple, we can send individual pulses down the rope and just focus on the middle of the rope (ie, ignore what happens when a pulse reaches the end). • Disturbance A = pulse sent from left end of rope. • Disturbance B = pulse sent from right end of rope. • What does the PoS tell us will happen when pulses are sent from both ends of the rope at once (Disturbance A+B) ? Physics of Music, Lecture 3, D. Kirkby

  31. Try the pulse examples in this online demonstration… • What did we learn? • Two pulses can pass right through each other without disturbing each other • Two positive pulses combine momentarily to make a single pulse that is twice as big: constructive interference • A positive pulse and a negative pulse can exactly cancel one another momentarily: destructive interference Physics of Music, Lecture 3, D. Kirkby

  32. Superposition: Example 3 • What if, instead of pulses, we apply a periodic SHM-like disturbance to the rope? • Again, we ignore the ends of the rope. • Disturbance A = SHM wave traveling left to right • Disturbance B = SHM wave traveling right to left • Disturbances A and B could have different frequencies and amplitudes. • What does the PoS tell us now? Physics of Music, Lecture 3, D. Kirkby

  33. Try the wave examples in this online demonstration… • The resulting wave goes back and forth between constructive and destructive interference. • The resulting wave also moves to the right. (Why not to the left?) Physics of Music, Lecture 3, D. Kirkby

  34. Superposition of >2 Disturbances • We have focused on examples of the superposition of 2 disturbances, but superposition holds for an arbitrary number of disturbances: FA+B+C+D+…(t) = FA(t) + FB(t) + FC(t) + FD(t) + … We can even imagine (and often do!) an infinite number of disturbances combined together. This is fine as longas the disturbances get smaller and smaller sufficiently fast, eg, 1/2 + 1/4 + 1/8 + 1/16 + … = 1 Physics of Music, Lecture 3, D. Kirkby

  35. Back to Complex Waves • We learned about the Principle of Superposition in order to help us understand the complex waves that characterize musical sound. • How is it helping us? • A musical sound is the result of a complex vibration. • The PoS tell us we can understand a complex vibration as the combined result of many simpler vibrations. Physics of Music, Lecture 3, D. Kirkby

  36. Armed with the PoS, we study a musical sound by asking: • What are the basic simple vibrations (modes) that combine to make the final complex vibration? • What determines the contribution of each mode to the final sound? Physics of Music, Lecture 3, D. Kirkby

  37. Reflection of Pulses • So far we have ignored what happens at the end of a long rope when a pulse reaches it.What does happen? Try this online demonstration to find out. • The reflected pulse is flipped: a positive pulse becomes a negative pulse and vice versa. • Why? Because the fixed end of the rope cannot move and this is the only way to do it. Physics of Music, Lecture 3, D. Kirkby

  38. Reflection and the PoS • Reflection is mathematically the same as sending a negative pulse from the opposite end of a long rope that meets the positive pulse where the fixed end would be. • Compare the earlier demonstrations of reflections and superposition to convince yourself. Physics of Music, Lecture 3, D. Kirkby

  39. Boundary Conditions • The fact that the end of the rope is fixed is an example of a boundary condition.Another possible boundary condition is that the end of the rope is free to move. What is the motion in this case? • Try this online demonstration to find out. • With this new boundary condition, the reflected pulse is no longer flipped! Physics of Music, Lecture 3, D. Kirkby

  40. Reflection of Waves • What if we send a periodic wave down the rope instead of a pulse? • Back to the online demonstrations to find out. Physics of Music, Lecture 3, D. Kirkby

  41. Reflection: Example 1 • Sound waves that hit a smooth solid object (eg, a large building) are reflected back. • This is just an echo.Did you know that the reflected sound is the negative of the original sound? • The reflections of sound waves against the walls of a room have a big influence on the sound we hear. Physics of Music, Lecture 3, D. Kirkby

  42. Reflection: Example 2 • Light shining on a smooth shiny surface (eg, a mirror) is reflected back. Physics of Music, Lecture 3, D. Kirkby

  43. How Smooth? • Reflection occurs from any surface, but the reflection from a rough surface is incoherent (bounces off in all directions) which the reflection from a smooth surface is coherent (bounces all in the same direction). • How smooth is smooth enough for coherent reflections? • The wavelength sets the scale. • Remember that sound has wavelengths about 1 meter while light has wavelengths about 1 micrometer. Physics of Music, Lecture 3, D. Kirkby

  44. Summary • Although SHM of an object generates sound, it is not a musical sound. • Two key features missing from the sound generated by SHM are envelope and complex vibrations. • Damping is the result of dissipation and leads to an exponential decay of a sound’s envelope. Physics of Music, Lecture 3, D. Kirkby

  45. The PoS is a powerful tool for understanding a complex vibrations in terms of the simple modes that contribute to it. • Reflection is a universal feature of any wave that passes from one medium into another. Physics of Music, Lecture 3, D. Kirkby

  46. Review Questions • What does the envelope of SHM look like?How long does an exponentially decaying sound last for? • Can a string vibrate at two different frequencies at the same time? • Why does sound reflect off a brick building but light does not? Physics of Music, Lecture 3, D. Kirkby

More Related