1 / 41

Intense Slow Positron Source

Intense Slow Positron Source. Introduction Science & Frontier Technology Production of e + Competition Proposal Request to EPAC. Introduction. Our motivation: detect deviation from gravity in P s or Hbar free-fall make a beam of anti-atoms ( ≠CERN expts.)

chung
Download Presentation

Intense Slow Positron Source

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Intense Slow Positron Source • Introduction • Science & Frontier Technology • Production of e+ • Competition • Proposal • Request to EPAC P. Pérez & A. Rosowsky

  2. Introduction • Our motivation: detect deviation from gravity in Ps or Hbar free-fall • make a beam of anti-atoms (≠CERN expts.) • use few pbar (expensive) • use many e+ EC ~ eV ,  EC ~ 1.5 meV •  e+ factory : today’s proposal • New applications outside this field for Ne+ > 109 s-1 P. Pérez & A. Rosowsky

  3. Making anti atoms • Radiative Recombination (RR) ne ≤ 10 8 cm–3 p ++ e– Hp–+ e + Hbar • Laser Induced Radiative Recombination (LIRR) p ++ e– + h H + 2hp–+ e+ + h Hbar + 2h • 3 Body reactions (3BDY) ne ≥ 10 9 cm–3 p++ e– + e±H* + e± p–+ e+ + e±Hbar* + e± e + + e– + e ± Ps * + e ± • Charge exchange with Positronium (CXPS) p ++ Ps H + e +p–+ Ps Hbar + e– H+ Ps  H– + e +Hbar+ Ps  Hbar+ + e– Matter Anti-matter CERN SLAC P. Pérez & A. Rosowsky

  4. p+ + Ps  H + e+ C.M. 20 KeV p– (lab)  10–15 cm2 N.Yamanaka & Y. Kino, Phys. Rev. A 65, 062709 P.K. Biswas,J.Phys. B: At. Mol. Opt. Phys. 34 (2001) 4831 H + Ps  H − + e+ 1014Ps at/cm3  10– 4 Hbar + per incident antiproton 20 KeV p (lab) 10−17 cm2 P. Pérez & A. Rosowsky

  5. ATHENA 2.5 108 cm-3 e+ lifetime in plasma (s) Plasma temperature we will be here ! 1012 1014 • Transform all e+ into Ps in less than 1 ns via 3 body reaction: • e + + e – + e ± Ps* + e ± 20 KeV p ± + Ps target  H/p = Hbar/p– = 0.1 In same Ps target H+ Ps  H– + e+ Hbar+ Ps  Hbar++ e– H–/H = Hbar+/Hbar=10-3 1 ns 0.1 ns 1014Ps at/cm3  10– 4 Hbar + per incident antiproton plasma density (cm-3) P. Pérez & A. Rosowsky

  6. Layout scheme Target : aerogel / Si cristal Greaves-Surko traps e+ trap ( ~ eV ) L = 1 cm S = 1 mm2  = 1200 m p+ or p– trap ( ~20 keV ) H, H – or Hbar, Hbar+  Free fall expt. Positronium target : Few 1012 e ± inside 10-2 cm3 => Ps density ~ 1014 cm-3 e–trap ( ~ eV ) several minutes to fill e+trap P. Pérez & A. Rosowsky

  7. (7K) Greaves-Surko trap UC San Diego Ne moderator: Ec < 1 MeV  eV N2 buffer gas : eV  meV Penning Malmberg trap Rotating wall ATHENA : 108 e+ Project to store 1015 within 3 years1012 1013e+ P. Pérez & A. Rosowsky

  8. Gravity experiment possible with Ps only High Rydberg states of Ps can live ~ 1ms produce thermal Ps atoms (3 km/s max speed) then excited with Doppler-free two photon techniques Ps atoms focused by mirror and converge on 1 m spot deflection expected from gravity is 50 m on a 10 m scale rate of slow positrons needed in order to achieve a 5  measurement in a week of run is ~ 109 s-1 BEC Ps 511 KeV  ray laser 3D imaging of molecules Fundamental Physics expts A. P. Mills & P.M. Platzman publications P. Pérez & A. Rosowsky

  9. Other research & Applications • e+ e– plasmas  Astrophysics • Feed stellarator for low energy neutral plasma study • Relativistic plasmas study on ms to s time scales • Cold & bright e+ beams  materials study • High speed electronics and chips (PALS) • Positron microscopy • Filling of portable trap with 1012 e+  commercial use (UCSD design) • « advanced futuristic » projects : energy storage, USAF shuttle propulsion… P. Pérez & A. Rosowsky

  10. e+ Production and Collection • Beam energy/intensity : 10 MeV 2~10 mA • Target geometry : thin foil at grazing incidence ( 3 degrees) • Probability of first interaction (e+ & Xrays) • Thermal effects : Xrays leak + IR slab effect • Large angle collection and selection < 1 MeV P. Pérez & A. Rosowsky

  11. Target (2) Study energy deposit as a function of incidence angle Thickness = D equivalent thickness: D’ = D / sin 30 D 30 D’ P. Pérez & A. Rosowsky

  12. Kinetic energy at target exit electrons positrons Energy (GeV) Energy (GeV) P. Pérez & A. Rosowsky

  13. Production point At target exit Kinetic energy (GeV) Kinetic energy (GeV) Energy versus angle angle P. Pérez & A. Rosowsky

  14. Magnetic Bulb B target e+ e+ x B B e- dump target e+ P. Pérez & A. Rosowsky

  15. Collection Setup count e+ here 20 cm 50 cm 40 cm 1 m P. Pérez & A. Rosowsky

  16. Simulation and engineering 10 cm P. Pérez & A. Rosowsky

  17. Positrons P. Pérez & A. Rosowsky

  18. electrons P. Pérez & A. Rosowsky

  19. 3D view P. Pérez & A. Rosowsky

  20. X = 3 cm X = 200 cm e+ position in (y , z) planes Before 4-poles P. Pérez & A. Rosowsky

  21. positrons electrons Energy (GeV) Energy (GeV) energy versus radius at x = 200 cm Radius (cm) P. Pérez & A. Rosowsky

  22. Kinetic energy < 1 MeV All kinetic energies Radius (cm) Radius (cm) Positrons radius at x = 200 cm P. Pérez & A. Rosowsky

  23. Target e- soldering test on Tungsten 50 m 40 kV / 20 mA on 20 mm2 not perforated at 15 mA Working hypothesis: 1 k W / cm2  3100 K Test with high intensity beam from IBA foreseen  T rise, evaporation… P. Pérez & A. Rosowsky

  24. Target (2) Study energy deposit as a function of incidence angle Thickness = D equivalent thickness: D’ = D / sin 30 D 30 D’ P. Pérez & A. Rosowsky

  25. Target (3) e- track length inside targets of 1mm equivalent thickness 30 900 ( cm) ( cm) P. Pérez & A. Rosowsky

  26. Energy Deposit in 1cm2 Target E(e-) = 10 MeV Simulation with GEANT/EGS Deposited power for 1 mA IMAX for 1 kW deposited Power (W) Current (mA) 900  4.5 kW/mA 0.59 mA 30 30 0.22 mA 1.7 kW/mA 900 D’(m) D’(m) P. Pérez & A. Rosowsky

  27. Production Rate (1) 107 electrons on 1 cm2 target e+ forward Ee+<1 MeV Ne+ Ne+ 30 30 900 900 ~ 15000 / 107 = 1.5 10-3 ~ 3500 / 107 = 3.5 10-4 D’(m) D’(m) P. Pérez & A. Rosowsky

  28. Production Rate (2) Power deposited in 1 cm2 target = 1 kW X 109 X 109 e+ forward Ee+<1 MeV Ne+ (s-1) Ne+ (s-1) 30 30 1.4 1012 0.6 1012 900 900 D’(m) D’(m) P. Pérez & A. Rosowsky

  29. Production For 1 cm2 of target D’ = 1mm Limit 1 kW / cm2 Normalization to same number of e- generated 900 in units of 1012 s-1 30 1 2 3 4 5 0.58 mA  2.3 mA for 4 cm2 Ee+ (MeV) P. Pérez & A. Rosowsky

  30. Collection efficiency Fraction of e+ at exit plane inside circle of radius 5 or 2 cm centered on axis r = 5 cm r = 2 cm E < 600 KeV with quad slit shaped beam 5 2 E < 1 MeV 1 x 4 cm no quad 2 x 2 cm transverse radius of e+ source at target level (cm) P. Pérez & A. Rosowsky

  31. Collected Positron Rates(2m from target) (e+ rates in units of 1012 s-1) e+ produced as much as possible near axis is best for production and collection all e+ at exit plane R < 5 cm R < 2 cm E (MeV) P. Pérez & A. Rosowsky

  32. Electron and photon fluxes Two possible setups with same e+ output • Beam and coils on same axis • Target and downstream coils on same axis e- e- P. Pérez & A. Rosowsky

  33. Fluxes of electrons and photons at exit plane I = 2.3 mA Power (kW) Power (kW) Setup 1 Setup 2 plots for 1 mA X (along coils axis) (cm) X (along coils axis) (cm) P. Pérez & A. Rosowsky

  34. A very first design of a 2D expander/uniformizer F. Meot and T. Daniel, NIM, A 379 (1996) 196-205.  (m) Z (m) Y (m) x (m) P. Pérez & A. Rosowsky

  35. EPOS design + trap Proposed design MeV e+ converter W moderator e- MeV e+ dump converter e- 1.5 eV e+ extraction lenses Ne moderator E (2-5 kV) trap trap E(decel.) Design differences (1) Rossendorf / Aarhus 1.5 eV e+ P. Pérez & A. Rosowsky

  36. Design differences (2) Proposed design: 10 MeV, 2.5 mA, CW Ne Moderator, thin W target Collection efficiency before trap 20% Expected rate before trap 1.1 1010s-1 Original EPOS design: 40 MeV, 0.25 mA, ~CW Linac Pt or W moderator, 3.5 mm Pt target Neutron activation Collection efficiency before trap 20% Expected Rate before trap 1.6 108s-1 At 10 MeV, 2.5 mA 1mm target = 0.8 108s-1 P. Pérez & A. Rosowsky

  37. Other designs Thermal neutron capture:  113Cd(n,)114Cd  = 26000 barn !! By nuclear research reactor FRM2 in Munich (Germany) can reach 1010s-1 Building size: 40 m x 40 m x 30 m P. Pérez & A. Rosowsky

  38. Scientific Goals • Gravity and spectroscopy with Ps H Hbar • Astrophysics “in vitro” • 3D molecule imaging • Ps BEC and 511 KeV Laser • Applied technology : positron microscope P. Pérez & A. Rosowsky

  39. Proposal: best ingredients .. • e+ facility : Ne+ > 109 s-1 • fundamental interaction physics : HEP lab • e– beam expertise and beam research • SR radiation control infrastructure • Interdisciplinary lab • Location near trap development ……….SLAC ? P. Pérez & A. Rosowsky

  40. Ressource Impacts • Building : • new ~ 2.5 M$ • refurbished ~ x00 k$ • Target-collection • Injection ~ 400 k$ • e- machine : • Rhodotron ~ 2.5 M$ • Linac ~ 300 k$ • Parallel project UC San Diego • Moderator • Buffer gas • trap ~ 500 k$ • Infrastructure : • 250 kW • Water cooling • Radiation control, safety … P. Pérez & A. Rosowsky

  41. Requests • Winter workshop: • Start interdisciplinary community • Start SLAC - Saclay project collaboration • Trigger other institutes interest • EPAC feed back: • encourage TDR for june 2004 EPAC P. Pérez & A. Rosowsky

More Related