180 likes | 327 Views
16.360 Lecture 6. Last lecture:. Wave propagation on a Transmission line Characteristic impedance Standing wave and traveling wave Lossless transmission line Reflection coefficient. = + j,. = Re ( R’ + j L’) (G’+ j C’) ,. = Im ( R’ + j L’) (G’+ j C’) ,. +.
E N D
16.360 Lecture 6 • Last lecture: • Wave propagation on a Transmission line • Characteristic impedance • Standing wave and traveling wave • Lossless transmission line • Reflection coefficient
= + j, = Re (R’ + jL’) (G’+ jC’) , = Im (R’ + jL’) (G’+ jC’) , + V0 Z0 + I0 (R’ + jL’) (G’+j C’) = + - V(z) = V0 (14) + V0 -z -z z z e e e e + - + i(z) = I0 (15) I0 16.360 Lecture 6 • Wave equations d²V(z)/dz² - ²V(z) = 0, (10) d² i(z)/dz² - ²i(z) = 0, (13) 0, 0,
c 1 = = Z0 = = = L’C’ L’C’ L’C’ L’C’ rr L’C’ 1 = 2/ = Vp 1 L’ = = Vp = / C’ 16.360 Lecture 6 • lossless transmission line : = + j, = 0, L’C’ =
+ - V(z) = V0 + V0 c 1 c 1 1 + = = = = = - + i(z) = I0 I0 Z0 = = = = L’C’ L’C’ rr rr L’C’ L’C’ Vp L’ jz -jz jz -jz e e e e = C’ 16.360 Lecture 6 • For TEM transmission line : L’C’ = Vp • summary :
B - A ZL Z0 = + + ZL Z0 V0 Z0 VL Vg(t) Vi ZL l z = - l z = 0 - V0 + - V(z) = V0 + V0 + - - i(z) = V0 V0 Z0 Z0 -jz -jz jz jz e e e e 16.360 Lecture 6 • Voltage reflection coefficient : • || 1, how to prove it? • If ZL = Z0, = 0. Impedance match, no reflection from the load ZL.
+ V0 with = - V0 + - V(z) = V0 + V0 + - + - i(z) = V0 V0 V0 jz jr Z0 Z0 Z0 e e jz -jz -jz jz -jz jz -jz -jz (e e e e e e e e + 1/2 = |V0| [1+ | |² + 2||cos(2z + r)] 16.360 Lecture 6 • Today • Standing wave • Input impedance jz + e V(z) = V0() + - i(z) = ) + |V(z)| = |V0| || + ||
+ V0 with = - V0 + - V(z) = V0 + V0 - + + - i(z) = V0 V0 V0 jz jr Z0 Z0 Z0 e e jz jz -jz -jz -jz -jz jz -jz (e e e e e e e e + 1/2 = |V0| [1+ | |² + 2||cos(2z + r)] 16.360 Lecture 6 • Standing wave jz + e V(z) = V0() + - i(z) = ) + |V(z)| = |V0| || + ||
jz + e + - || + V0 jz jr Z0 e e jz -jz -jz -jz (e e e e + 1/2 = |V0| [1+ | |² + 2||cos(2z + r)] 16.360 Lecture 6 • Standing wave V(z) = V0() - i(z) = ) + |i(z)| = |V0| /|Z0||| + 1/2 = |V0|/|Z0| [1+ | |² - 2||cos(2z + r)] |V(z)|
|V(z)| + |V0| - -3/4 -/2 -/4 |V(z)| |V(z)| + 2|V0| + 1/2 - -3/4 -/2 -/4 = |V0| [1+ | |² + 2||cos(2z + r)] 16.360 Lecture 6 Special cases • ZL= Z0, = 0 + |V(z)| = |V0| 2. ZL= 0,short circuit, = -1 + 1/2 |V(z)| = |V0| [2 + 2cos(2z + )]
|V(z)| + 2|V0| |V(z)| - -3/4 -/2 -/4 + 1/2 = |V0| [1+ | |² + 2||cos(2z + r)] 16.360 Lecture 6 Special cases 3. ZL= ,open circuit, = 1 + 1/2 |V(z)| = |V0| [2 + 2cos(2z )]
+ |V(z)| |V0| [1+ | |], = max |V(z)| + 1/2 = |V0| [1+ | |² + 2||cos(2z + r)] 16.360 Lecture 6 • Voltage maximum when 2z + r = 2n. –z = r/4+n/2 n = 1, 2, 3, …, if r <0 n = 0, 1, 2, 3, …, if r >= 0
+ |V(z)| |V0| [1 - | |], = min |V(z)| + 1/2 = |V0| [1+ | |² + 2||cos(2z + r)] 16.360 Lecture 6 • Voltage minimum when 2z + r = (2n+1). –z = r/4+n/2 + /4 Note: voltage minimums occur /4 away from voltage maximum, because of the 2z, the special frequency doubled.
S |V(z)| |V(z)| min max 1 + | | = 1 - | | 16.360 Lecture 6 • Voltage standing-wave ratio VSWR or SWR S = 1, when = 0, S = , when || = 1,
B A Z0 VL Vg(t) Vi ZL l z = - l z = 0 16.360 Lecture 6 • An example Voltage probe S = 3, Z0 = 50, lmin = 30cm, lmin = 12cm, ZL=? Solution: lmin = 30cm, = 0.6m, S = 3, || = 0.5, -2lmin + r = -, r = -36º, , and ZL.
jz jz + + e e + - ( ( ) ) V0 V0 V(z) I(z) j2z -j2l -j2l j2z e e e e - + - + (1 (1 (1 (1 ) ) ) ) Z0 Z0 -jz -jz e e 16.360 Lecture 6 • Input impudence B Ii A Zg Vg(t) Z0 VL Vi ZL l z = - l z = 0 Zin(z) = Z0 = = Zin(-l) =
-j2l -j2l e e - + (1 (1 ) ) Z0 16.360 Lecture 6 An example A 1.05-GHz generator circuit with series impedance Zg = 10- and voltage source given by Vg(t) = 10 sin(t +30º) is connected to a load ZL = 100 +j5- through a 50-, 67-cm long lossless transmission line. The phase velocity is 0.7c. Find V(z,t) and i(z,t) on the line. Solution: Since, Vp = ƒ, = Vp/f = 0.7c/1.05GHz = 0.2m. = 2/, = 10 . = (ZL-Z0)/(ZL+Z0), = 0.45exp(j26.6º) Zin(-l) = = 21.9 + j17.4 Zin(-l) + V0[exp(-jl)+ exp(jl)] Vg = Zin(-l) + Zg
16.360 Lecture 6 Next lecture • short circuit line • open circuit line • quarter-wave transformer • matched transmission line