1 / 9

Separability

Separability. Prinicipal Function. In some cases Hamilton’s principal function can be separated. Each W depends on only one coordinate. This is totally separable. Function can be partially separable. Simpler separability occurs when H is a sum of independent parts.

Download Presentation

Separability

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Separability

  2. Prinicipal Function • In some cases Hamilton’s principal function can be separated. • Each W depends on only one coordinate. • This is totally separable. Function can be partially separable.

  3. Simpler separability occurs when H is a sum of independent parts. The Hamilton-Jacobi equation separates into N equations. Hamiltonian Separation

  4. Staeckel Conditions • Specific conditions exist for separability. • H is conserved. • L is no more than quadratic in dqj/dt, so that in matrix form: H=1/2(p - a)T-1(p -a)+V(qj) • The coordinates are orthogonal, so T is diagonal. • The vector a has aj = aj (qj) • The potential is separable. • There exists a matrix F with Fij = Fij(qi)

  5. Combined Potentials • Particle under two forces • Attractive central force • Uniform field along z • Eg: charged particle with another fixed point charge in a uniform electric field. Z Y X

  6. Select coordinates Constant value xh describe paraboloids of revolution Other coordinate is f Equate to cartesian system Find differentials to get velocity. Parabolic Coordinates

  7. Energy and Momentum Substituting for the new variables:

  8. Separation of Variables • Hamiltonian is not directly separable. • Set E = T + V • Multiply by (x + h)/2 • There are parts depending just on x, h. • There is a cyclic coordinate f. • Constant of motion pf • Reduce to two degrees of freedom

  9. Set Hamilton’s function. Use momentum definition Expect two constants a, b Find one variable Do the same for the other variable. And get the last constant. Generator Separation next

More Related