1 / 22

Aula 2: Introdução ao sp

Aula 2: Introdução ao sp. Pedro Ribeiro de Andrade DSA/CCST/INPE São José dos Campos, 2009. Apresentação baseada em: Pebesma & Bivand . S Classes and Methods for Spatial Data: the sp Package. Pacotes. KernSmooth MASS Matrix boot class cluster codetools foreign

Download Presentation

Aula 2: Introdução ao sp

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Aula 2:Introdução ao sp Pedro Ribeiro de Andrade DSA/CCST/INPE São José dos Campos, 2009 Apresentação baseada em: Pebesma & Bivand. S Classes and Methods for Spatial Data: the sp Package

  2. Pacotes KernSmooth MASS Matrix boot class cluster codetools foreign lattice mgcv nlme nnet rpart spatial survival base datasetsgrDevices graphicsgrid methods splines stats stats4 tcltktools utils • install.packages() • require() mais de 2000 pacotes no CRAN outros pacotes fora do CRAN

  3. Rproject -> CRAN -> Mirror ->TaskView-> Spatial

  4. sp: Tipos de Dados Espaciais

  5. SpatialPoints xc = round(runif(10), 2) yc = round(runif(10), 2) xy = cbind(xc, yc) xy.sp = SpatialPoints(xy) class(xy.sp) xy.sp[1:3,] xy.sp[1:3] bbox(xy.sp) summary(xy.sp) coordinates(xy.sp) as(xy.sp, "data.frame") plot(xy.sp)

  6. SpatialPointsDataFrame df = data.frame(ID=paste(1:10), z1 = round(5 + rnorm(10), 2), z2 = 20:29) xy.spdf = SpatialPointsDataFrame(xy, df) xy.spdf = SpatialPointsDataFrame(xy.sp, df) names(xy.spdf) coordinates(xy.spdf) xy.spdf[1:2, ] xy.spdf[,1] xy.spdf[,"ID"] xy.spdf[,c("ID","z2")] xy.spdf[2:5,c("ID","z2")]

  7. SpatialPointsDataFrame – plot require(lattice) trellis.par.set(sp.theme()) data(meuse) coordinates(meuse)=~x+y spplot(meuse) spplot(meuse[,"zinc"], scales=list(draw=T)) spplot(meuse[1:100,"zinc"], do.log = T) spplot(meuse[,"zinc"], do.log = T, cuts = 3, legendEntries = c("low", "intermediate", "high")) spplot(meuse[,c("cadmium", "copper")], do.log = T) bubble(meuse,"cadmium", maxsize = 1.5, key.entries = 2^(-1:4))

  8. SpatialLines l1 = cbind(c(1, 2, 3), c(3, 2, 2)) l1a = cbind(l1[, 1] + 0.05, l1[, 2] + 0.05) l2 = cbind(c(1, 2, 3), c(1, 1.5, 1)) Sl1 = Line(l1) Sl1a = Line(l1a) Sl2 = Line(l2) S1 = Lines(list(Sl1, Sl1a), ID = "a") S2 = Lines(list(Sl2), ID = "b") Sl = SpatialLines(list(S1, S2)) summary(Sl) plot(Sl, col = c("red", "blue"))

  9. SpatialLinesDataFrame df = data.frame(z = c(1, 2), row.names = c("a", "b")) Sldf = SpatialLinesDataFrame(Sl, data = df) as.data.frame(Sldf) as(Sldf, "data.frame") summary(Sldf) spplot(Sldf)

  10. SpatialPolygons Sr1 = Polygon(cbind(c(2, 4, 4, 1, 2), c(2, 3, 5, 4, 2))) Sr2 = Polygon(cbind(c(5, 4, 2, 5), c(2, 3, 2, 2))) Sr3 = Polygon(cbind(c(4, 4, 5, 10, 4), c(5, 3, 2, 5, 5))) Sr4 = Polygon(cbind(c(5, 6, 6, 5, 5), c(4, 4, 3, 3, 4)), hole = TRUE) Srs1 = Polygons(list(Sr1), "s1") Srs2 = Polygons(list(Sr2), "s2") Srs3 = Polygons(list(Sr3, Sr4), "s34") SpP = SpatialPolygons(list(Srs1, Srs2, Srs3), 1:3) plot(SpP) plot(SpP, col=c("red","blue","green"))

  11. SpatialPolygonsDataFrame attr = data.frame(a = 1:3, b = 3:1, row.names = c("s34", "s2", "s1")) SrDf = SpatialPolygonsDataFrame(SpP, attr) as(SrDf, "data.frame") summary(SrDf) plot(SrDf) spplot(SrDf) spplot(SrDf[c("s1","s2"),])

  12. SpatialPolygonsDataFrame – plot data(meuse.riv) meuse.riv p=Polygon(meuse.riv) P=Polygons(list(p), "meuse.riv") meuse.sr =SpatialPolygons(list(P)) rv = list("sp.polygons", meuse.sr, fill = "lightblue") spplot(meuse[,"zinc"], do.log=TRUE, sp.layout=list(rv))

  13. SpatialPolygonsDataFrame – plot library(maptools) nc <- readShapePoly(system.file("shapes/sids.shp", package="maptools")[1], proj4string=CRS("+proj=longlat +datum=NAD27")) summary(nc) nc2=nc[c(67:71,84:86),] plot(nc2,asp=1) invisible(text(getSpPPolygonsLabptSlots(nc), labels=as.character(nc$NAME), cex=0.75)) plot(nc, add=T,asp=1) box()

  14. SpatialPolygonsDataFrame – plot spplot(nc[c("SID74", "SID79")]) rrt <- nc$SID74/nc$BIR74 brks <- quantile(rrt, seq(0,1,1/7)) dens <- (2:length(brks))*15 plot(nc, density=dens[findInterval(rrt, brks, all.inside=TRUE)]) box()

  15. S4 – objetos getSlots("SpatialPoints") slotNames(xy.sp) slot(xy.sp,"bbox") xy.sp@bbox getSlots("Line") getSlots("Lines") getSlots("SpatialLines") sapply(slot(Sl, "lines"), function(x) slot(x, "ID"))

  16. Grids e Pixels gt = GridTopology(cellcentre.offset = c(1, 1), cellsize = c(1, 1), cells.dim = c(3, 4)) grd = SpatialGrid(gt) summary(grd) gridparameters(grd) plot(grd) pts = expand.grid(x = 1:3, y = 1:4) grd.pts = SpatialPixels(SpatialPoints(pts)) summary(grd.pts) grd = as(grd.pts, "SpatialGrid") summary(grd)

  17. Grids e Pixels attr = expand.grid(xc = 1:3, yc = 1:3) grd.attr = data.frame(attr, z1 = 1:9, z2 = 9:1) coordinates(grd.attr) = ~xc + yc gridded(grd.attr) gridded(grd.attr) = TRUE gridded(grd.attr) summary(grd.attr)

  18. Pontos ou Matrizes? fullgrid(grd); fullgrid(grd.pts); fullgrid(grd.attr) fullgrid(grd.pts) = TRUE fullgrid(grd.attr) = TRUE fullgrid(grd.pts) fullgrid(grd.attr) fullgrid(grd.attr) = FALSE image(grd.attr[1:5, "z1"]) fullgrid(grd.attr) = TRUE image(grd.attr[1]) image(grd.attr["z2"])

  19. SpatialGrids require(splancs) data(bodmin) b.xy <- coordinates(bodmin[1:2]) r = apply(bodmin$poly, 2, range) (r[2,]-r[1,])/0.2 grd1 <- GridTopology(cellcentre.offset=c(-5.2, -11.5), cellsize=c(0.2, 0.2), cells.dim=c(75,100)) (r[2,]-r[1,])/0.1 grd1 <- GridTopology(cellcentre.offset=c(-5.2, -11.5), cellsize=c(0.1, 0.1), cells.dim=c(150,200))

  20. SpatialGrids k100 <- spkernel2d(b.xy, bodmin$poly, h0=1, grd1) k150 <- spkernel2d(b.xy, bodmin$poly, h0=1.5, grd1) k200 <- spkernel2d(b.xy, bodmin$poly, h0=2, grd1) k250 <- spkernel2d(b.xy, bodmin$poly, h0=2.5, grd1) df <- data.frame(k100, k150, k200, k250) kernels <- SpatialGridDataFrame(grd1, data=df) spplot(kernels, col.regions=terrain.colors(16), cut=15) image(kernels[1]) contour(kernels[1],add=T, nlev=5)

  21. Aula 2:Introdução ao sp Pedro Ribeiro de Andrade DSA/CCST/INPE São José dos Campos, 2009 Apresentação baseada em: Pebesma & Bivand. S Classes and Methods for Spatial Data: the sp Package

  22. Projeções: rgdal com PROJ.4 require(rgdal) data(state) states <- data.frame(state.x77, state.center) states <- states[states$x > -121,] coordinates(states) <- c("x", "y") proj4string(states) <- CRS("+proj=longlat +ellps=clrk66") summary(states) state.merc <- spTransform(states, CRS=CRS("+proj=merc +ellps=GRS80")) summary(state.merc)

More Related