1 / 8

基于 Hadoop+SVM 的关键词分类解决方案

基于 Hadoop+SVM 的关键词分类解决方案. 队伍名称:雨石 队员组成:张延祥 潘临杰. 目录. 算法总体流程 Hadoop 实现 调优 可扩展点 参考文献. 算法总体流程. 中文分词 向量化 模型训练 样本预测. Hadoop 实现. 分词 IKAnalyzer SVM Liblinear Hdfs 读取 一对一训练 or 分组训练 训练预测 map-reduce 投票预测. 调优. 分组数目与分类性能的权衡( 0.05%-0.15% ) 细粒度分词( 0.8% 左右) 张三 / 说的 / 确实 / 在理

cicada
Download Presentation

基于 Hadoop+SVM 的关键词分类解决方案

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 基于Hadoop+SVM的关键词分类解决方案 队伍名称:雨石 队员组成:张延祥 潘临杰

  2. 目录 • 算法总体流程 • Hadoop实现 • 调优 • 可扩展点 • 参考文献

  3. 算法总体流程 • 中文分词 • 向量化 • 模型训练 • 样本预测

  4. Hadoop实现 • 分词 • IKAnalyzer • SVM • Liblinear • Hdfs读取 • 一对一训练or分组训练 • 训练预测map-reduce • 投票预测

  5. 调优 • 分组数目与分类性能的权衡(0.05%-0.15%) • 细粒度分词(0.8%左右) • 张三/说的/确实/在理 • 张三/三/说的/的确/确实/实在/在理 • 向量化权重(0.02%) • svm参数(0.2%) • -s 4 (MCSVM_CS,Multi-class SVM by Crammer and Singer) • 停用词(0.04%)

  6. 可扩展点 • 模型训练并行化 • 切分数据(抽样,聚类等)

  7. 参考资料 • IKAnalyzer官网:https://code.google.com/p/ik-analyzer/ • Liblinear官网:http://www.csie.ntu.edu.tw/~cjlin/liblinear/ • Fan R E, Chang K W, Hsieh C J, et al. LIBLINEAR: A library for large linear classification[J]. The Journal of Machine Learning Research, 2008, 9: 1871-1874. • Keerthi S S, Sundararajan S, Chang K W, et al. A sequential dual method for large scale multi-class linear SVMs[C]//Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2008: 408-416.

  8. 谢谢! • Q&A

More Related