1 / 32

EQUILIBRIUM OF RIGID BODIES KESETIMBANGAN BENDA TEGAR

EQUILIBRIUM OF RIGID BODIES KESETIMBANGAN BENDA TEGAR. Equilibrium Of POINT ( Kesetimbangan Titik). Base on object of Equilibrium. Equilibrium of Rigid Bodies ( Kesetm. Benda Tegar). Equilibrium Of POINT ( Kesetimbangan Titik). T 1. T 2. Syarat Setimbang: Σ F x = 0 Σ Fy = 0. Point.

cili
Download Presentation

EQUILIBRIUM OF RIGID BODIES KESETIMBANGAN BENDA TEGAR

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. EQUILIBRIUM OF RIGID BODIES KESETIMBANGAN BENDA TEGAR roghibin's blog

  2. Equilibrium Of POINT ( Kesetimbangan Titik) Base on object of Equilibrium Equilibrium of Rigid Bodies ( Kesetm. Benda Tegar) roghibin's blog

  3. Equilibrium Of POINT( Kesetimbangan Titik) T1 T2 • Syarat Setimbang: • Σ Fx = 0 • Σ Fy = 0 Point W roghibin's blog

  4. T1 T2 Point W Equilibrium Of POINT( Kesetimbangan Titik) T1 sinα Σ Fx = 0 T1 cos α- T2 cos β = 0 Σ Fy = 0 T1 sinα + T2 sinβ – W = 0 T2 sinβ β T1 cos α α T2 cos β roghibin's blog

  5. Ditermine tension of each string T1 , T2 and T3 ! Example 60o 30o T3 T2 T1 5 Kg roghibin's blog

  6. Answer T1 = W = m.g = 50 N T3 sin60o T2 T3 Σ Fx = 0 T2 sin30o T2 cos 30o - T3 cos60o = 0 T2 ½ = T3 ½ T3 = T2 60o 30o T2 cos 30o T3 cos60o Σ Fy = 0 T2 sin30o + T3 sin60o – W = 0 T2 ½ + T3 ½ = 50 T2 + T3 = 100 T2+T2.3=100 4 T2=100 T2= 25 N T1 T3= 25 N roghibin's blog

  7. Shortcut Formula T2 T1 α3 α1 α2 Notes : Di kwadran 2 berlaku : Sin ( 180 – α ) = sin α T3 roghibin's blog

  8. Ditermine tension of each string T1 , T2 and T3 ! Example 60o 30o T3 T2 T1 5 Kg roghibin's blog

  9. Answer 60o 30o T3 90o T2 150o 120o T1 5 Kg T1 = W = 50 N roghibin's blog

  10. Moment Of Force F l sinα α poros α l F F sinα roghibin's blog

  11. Moment of Force is Vector + As clockwise _ Anti clockwise roghibin's blog

  12. roghibin's blog

  13. roghibin's blog

  14. roghibin's blog

  15. roghibin's blog

  16. EquilibriumOf Rigid Bodies Prerequisite Of Equilibrium of Rigid Bodies roghibin's blog

  17. Example No: 1 A B O 2m X = ? 60 kg 100 kg To becomes equilibrium condition, so where are B object must be placed from O ?  X = ? roghibin's blog

  18. N O 2m X = ? WB=600N wA = 1000N WB.x – WA.2=0 600x – 1000.2 =0 600x = 2000 X = 2000/600 X = 3,3 m N – WA – WB =0 N – 1000 -600 =0 N = 1600 N roghibin's blog

  19. Dua orang A dan B ingin membawa beban 1200 N dengan menggunakan batang homogen yang masanya dapat diabaikan. Panjang batang 4 meter. Dimanakah beban harus diletakkan ( diukur dari B ) agar B menderita gaya 2 kali dari A. B A roghibin's blog

  20. NB NA 4m NA+NB-w=0 NA+NB=1200 NA+2NA=1200 3NA = 1200 NA= 400 N NB= 800 N X=? (4-x) 1200N NA.(4-X)-NB.X=0 400(4-X)-800X=0 1600-400X-800X=0 1600-1200X=0 1600=1200X X= 1,33 m NB = 2 NA B A roghibin's blog

  21. From the following picture, how far C must be placed from B so that equilibrium system ! mA = 80 kg mB = 30 Kg mC = 20 kg AO = 1,5 m OB = 1,2 m B C A X =? o roghibin's blog

  22. B C A X =? N N – 800 – 300 – 200 = 0 N = 1300 N Poros O 1,5m 1,2m o 300.1,2 + 200(1,2+x)-800.1,5 = 0 360+240+200x=1200 300N 200N 600 + 200 x = 1200 800N 200 x = 600 X = 600/200 X = 3 meter roghibin's blog

  23. WEIGHT POINT ( X1, Y1) ( X3, Y3) ( Xo, Yo) W3 W1 ( X4, Y4) W2 W4 W ( X2, Y2) roghibin's blog

  24. ( Xo, Yo) ( X1, Y1) ( X3, Y3) W W3 W1 ( X4, Y4) W2 W4 ( X2, Y2) W.Xo = w1.x1+ w2.x2 + w3.x3 + w4.x4 W = w1 + w2 + w3 + w4 Xo = w1.x1+ w2.x2 + w3.x3 + w4.x4 w1 + w2 + w3 + w4 W.Yo = w1.y1+ w2.y2 + w3.y3 + w4.y4 Yo = w1.y1+ w2.y2 + w3.y3 + w4.y4 w1 + w2 + w3 + w4 roghibin's blog

  25. If we concern about AREA Xo = A1.x1+ A2.x2 + A3.x3 + A4.x4 A1 + A2 + A3 + A4 Yo = A1.y1+ A2.y2 + A3.y3 + A4.y4 A1 + A2 + A3 + A4 roghibin's blog

  26. If we concern about VOLUME Xo = V1.x1+ V2.x2 + V3.x3 + V4.x4 V1 + V2 + V3 + V4 Yo = V1.y1+ V2.y2 + V3.y3 + V4.y4 V1 + V2 + V3 + V4 roghibin's blog

  27. If we concern about LENGTH Xo = l1.x1+ l2.x2 + l3.x3 + l4.x4 l1 + l2 + l3 + l4 Yo = l1.y1+ l2.y2 + l3.y3 + l4.y4 l1 + l2 + l3 + l4 roghibin's blog

  28. Example : 1 Determine the coordinate of weight point, from following area object ! 10 3 2 6 roghibin's blog

  29. answer y 20 1 , 5 10 12 4 , 1,5 (1,5) (4,1 ½ ) A1.x1+ A2.x2 A1 + A2 Xo = 3 = 20.1+12.4 20+12 = 68 32 = 2,125 x 2 6 A1.y1+ A2.y2 A1 + A2 = 118 32 yo = = 20.5 + 12.1,5 20 + 12 = 100 + 18 32 = 3, 688 roghibin's blog

  30. Example : 2 Determine the coordinate of weight point, from following volume object ! 2R 2R 2R roghibin's blog

  31. Answer : y 2πR3 0, R 2R -2/3πR3 0, 3/8R 2/3πR3 2R 0, ½ R x 2R roghibin's blog

  32. Xo = V1.x1+ V2.x2 + V3.x3 V1 + V2 + V3 XO= 0 Yo = V1.y1+ V2.y2 + V3.y3 V1 + V2 + V3 roghibin's blog

More Related