1 / 36

Algorithm Programming 1 89-210 Java API and Containers

Algorithm Programming 1 89-210 Java API and Containers. Bar-Ilan University 2007-2008 תשס"ח by Moshe Fresko. “Object” class. “java.lang.Object” class is the root of all class hierarchy Methods of “Object” that can be overridden: public boolean equals (Object obj)

cindyfloyd
Download Presentation

Algorithm Programming 1 89-210 Java API and Containers

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Algorithm Programming 189-210Java API and Containers Bar-Ilan University 2007-2008 תשס"ח by Moshe Fresko

  2. “Object” class • “java.lang.Object” class is the root of all class hierarchy • Methods of “Object” that can be overridden: • public boolean equals(Object obj) • public String toString() • public int hashCode() • protected void finilize()throws Throwable • protected Object clone() throws CloneNotSupportedException

  3. “Object” class • Other methods of “Object” class • public final Class getClass( ) Runtime class information • public final void wait(…) Causes current thread to wait • public final void notify( ) Wakes up a single thread that is waiting on this object’s monitor • public final void notifyAll( ) Wakes up all threads that are waiting

  4. “Object” class methods • Overriding Object methods • public String toString( ) String representation of this object • protected void finilize( )throws Throwable This function is called by the Garbage Collector before the physical destruction of the object. • public int hashCode( ) • Hash Code to be used by containers like HashSet or HashMap. 1. It must be consistent within an object: x.hashCode()==x.hashCode() 2. It must be the same for “equal” objects. If x.equals(y), then x.hashCode()==y.hashCode()

  5. “Object” class methods • Overriding Object methods • protected Object clone() throws CloneNotSupportedException • When overriding, be aware that … • x.clone() != x • x.clone().getClass() == x.getClass() • x.clone().equals(x) • public boolean equals(Object obj) • When overriding, be aware to keep these characteristics • Reflexive: x.equals(x) == true • Symmetric: x.equals(y) == y.equals(x) • Transitive: if (x.equals(y)) and (y.equals(z)) then z.equals(x) • Consistent: x.equals(y) returns the same value for the same unchanged object references x and y. • x.equals(null) == false

  6. Algorithm Programming 1Exception Handling Moshe Fresko

  7. Basic Exceptions • float div(float x,float y) throws ArithmeticException { if (y==0.0f) throw new ArithmeticException(“Division by zero in div()”) ;} • void apply(Object t) throws NullPointerException { if (t==null) throw new NullPointerException(“Null pointer in apply()”) ;} • “throw” returns up the newly created object immediately from the function (or scope), even many levels … • “Throwable” : Exception root class. • Throwable() • Throwable(String) • “Exception” extends “Throwable” • All program exception classes must directly/indirectly inherit from “Exception” • Information on exception might be both in the object’s class, or in the String information inside (or other internal data).

  8. Catching Exception • The “try” Block try { // Code that might generate exception } • Exception Handlers try { // Code that might generate exceptions } catch(Type1 id1) { // Handle exceptions of Type1 } catch(Type2 id2) { // Handle exceptions of Type2 } catch(Type3 id3) { // Handle exceptions of Type3 }

  9. Custom Exceptions // SimpleExceptionDemo.java class SimpleException extends Exception { } public class SimpleExceptionDemo { public void f() throws SimpleException { System.out.println("Throw SimpleException from f()") ; throw new SimpleException(); } public static void main(String[] args) { SimpleExceptionDemo sed = new SimpleExceptionDemo() ; try { sed.f() ; } catch (SimpleException e) { System.err.println("Caught it!") ; } } } // Output Throw SimpleException from f() Caught it!

  10. Catching Exception • Catching any exception catch(Exception e) { System.err.println("Caught an exception"); } • Getting information on Exception (“Throwable” methods) • String getMessage() • String toString() • void printStackTrace() • void printStackTrace(PrintStream) • Etc.

  11. Exception Specification • Exception Specification void f() throws TooBig, TooSmall, DivZero { //... • Checked Exceptions Either you must take care of exceptions in your code or specify it in Exception Specification • When you don’t tell of any exception, only RuntimeException can be thrown void f() { //… • Re-throwing an exception catch(Exception e) { System.err.println("An exception was thrown"); throw e; }

  12. Standard Java Exceptions Object • Throwable : Root of all Exceptions/Errors “Error” : We don’t need to take care of it “Exception” : The Root of all exceptions • Unchecked Exceptions • “RuntimeException” Throwable Error Exception RuntimeException MyException1 MyException2

  13. “finally” keyword • Performing clean-up try { // The guarded region: Dangerous activities // that might throw A, B, or C } catch(A a1) { // Handler for situation A } catch(B b1) { // Handler for situation B } catch(C c1) { // Handler for situation C } finally { // Activities that happen every time }

  14. Algorithm Programming 189-210Containers in Java Bar-Ilan University 2006-2007 תשס"ז by Moshe Fresko

  15. Array utilities • In “java.utils.Arrays” class there are some static utility functions: • List asList(Object[] a) ; • boolean equals(char[] a, char[] b) boolean equals(Object[] a, Object[] b) • void fill(char[] a, char val) void fill(Object[] a, Object val) void fill(char[] a, int fromIdx, int toIdx, char val) void fill(Object[] a, int fromIdx, int toIdx, Object val)

  16. Array Utilities int binarySearch(char[] a, char key) int binarySearch(Object[] a, Object key) int binarySearch(Object[] a, Object key, Comparator c) void sort(char[] a) void sort(Object[] a) void sort(Object[] a, Comparator c) void sort(char[] a, int fromIdx, int toIdx) void sort(Object[] a, int fromIdx, int toIdx) void sort(Object[] a, int fromIdx, int toIdx, Comparator c)

  17. Array Utilities • For sort and binarySearch of Objects • Either a new Comparator c must be given • Or the given objects must implement Comparable • In both cases the comparison function returns Less then 0, if left object is smaller Greater then 0, if left object is greater 0, if both objects are equal • In java.utils.Comparator interface Comparator { int compare(Object o1, Object o2) ; } • In java.lang.Comparable interface Comparable { int compareTo(Object o) ; }

  18. Design Pattern : “STRATEGY” • “Strategy” Pattern: • Define a family of algorithms, encapsulate each one, and make them interchangeable. • Strategy lets the algorithm vary independently from clients that use it. • Example: • Arrays.sort(Object[] a, Comparator c) • binarySearch(Object[] a, Object key, Comparator c)

  19. Example : sort() import java.util.* ; class A { public final int i ; A(int i) { this.i = i ; } } class Ascending implements Comparator { public int compare(Object o1, Object o2) { A a1=(A)o1, a2=(A)o2 ; if (a1.i<a2.i) return -1 ; if (a1.i>a2.i) return +1 ; return 0 ; } } class Descending implements Comparator { public int compare(Object o1, Object o2) { A a1=(A)o1, a2=(A)o2 ; if (a1.i<a2.i) return +1 ; if (a1.i>a2.i) return -1 ; return 0 ; } }

  20. Example “sort()” public class S { public static void main(String[] args) { A[] asc = { new A(1), new A(5), new A(3), new A(2) } ; A[] dsc = (A[]) asc.clone() ; Arrays.sort(asc,new Ascending()) ; Arrays.sort(dsc,new Descending()) ; System.out.println("Ascending : "+arrStr(asc)) ; System.out.println("Descending: "+arrStr(dsc)) ; } static String arrStr(A[] a) { String s = "[" + a[0].i ; for (int i=1;i<a.length;++i) s += ","+a[i].i ; s+="]" ; return s ; } } // Output : Ascending : [1,2,3,5] // Descending: [5,3,2,1]

  21. Java Containers • In Java two types of Containers • Collection : A group of individual elements • List : Keeps elements in a particular sequence. • Set : Cannot have duplicate elements • Map : A set of key-value pairs. ( Also known as Associative arrays)

  22. Simplified Collections Diagram

  23. Collection methods boolean add(Object o) : Adds element to the collection boolean add(Collection c) : void clear() : Clears the collection. Size will be 0. boolean contains(Object o) : boolean containsAll(Collection c) : boolean isEmpty() : Returns true if collection is empty. Iterator iterator() : boolean remove(Object o) : Removes the element. boolean removeAll(Collection c) : boolean retainAll(Collection c) : int size() : Returns the number of elements in collection Object[] toArray() : Object[] toArray(Object[] a) :

  24. List and Set implementations • “Collection” interface • “List” interface : ( Order of insertion is kept ) • ArrayList : Implemented as an array of elements. Fast Random Access, but slow insertion and deletion from the middle. • LinkedList : Implemented as a double linked list. Insertion and Deletion in the middle is fast, but Slow in Random Access. • “Set” interface : ( Unique elements ) • HashSet : For sets where look-up time is important. Inserted objects must implement hashCode() method. • TreeSet : A sorted list can easily be extracted

  25. List and Set methods • interface “List” : Addition to “Collection” Object get(int index) Object set(int index, Object element) void add(int index, Object element) Object remove(int index) int indexOf(Object o) … • Interface “Set” : Addition to “Collection” …

  26. Map methods Object put(Object key, Object value) : Adds key-value pair to map void putAll(Map t) : Object get(Object key) : Get the value for the given key void clear() : Clears the map. Size will be 0. boolean containsKey(Object key) : Checks if the key exists. boolean containsValue(Object value) : boolean isEmpty() : Returns true if map is empty Object remove(Object key) : Removes the key from map int size() : Returns the number of elements in the map Set entrySet() : Set keySet() : Collection values() :

  27. Map implementations • “Map” interface • HashMap : Implemented using hash tables. Key objects must implement hashCode() method. • LinkedHashMap : Like HashMap., but keeps the order of insertion • TreeMap : Implemented by a red-black tree. You get the results in sorted order. (Determined by Comparable or Comparator)

  28. Iterator Pattern • Intent • Provide a way to access the elements of an aggregate object sequentially without exposing its underlying representation. • Motivation • An aggregate object such as a list should give you a way to access its elements without exposing its internal structure. Moreover you might want to traverse the list in different ways. • We cannot fill the List interface with different traversals we can need. • We may want a couple of traversals pending on the same time.

  29. Iterator

  30. Iterator – Example Structure

  31. Iterator • Use iterator pattern … • To access an aggregate object’s contents without exposing its internal representation. • To support multiple traversals of aggregate objects. • To provide a uniform interface for traversing different aggregate structures (to support polymorphic iteration).

  32. Iterator – General Structure

  33. Iterator • Participants • Iterator • Defines an interface for accessing and traversing elements • ConcreteIterator • Implements the iterator interface • Keeps track of the current position in the traversal • Aggregate • Defines an interface method that creates an iterator object • ConcreteAggregate • Implements the iterator creation method, and returns an instance of the proper ConcreteIterator

  34. Iterator • Consequences • It supports variants in the traversal of an aggregate • Iterators simplify the Aggregate interface • More then one traversal can be pending on an aggregate • Implementation • Who controls the iteration? • Client controls the iteration. (called External Iterator) • Iterator controls the iteration. (called Internal Iterator) • Who defines the traversal algorithm? • The aggregate: This is called a cursor. • The iterator. • How robust is the iterator? • Modifying an aggregate while traversing it will be dangerous for iterator. • Robust iterator will not be effected by changes.

  35. Java Iterators interface Collection { … Iterator iterator(); … } interface Set extends Collection { … Iterator iterator(); … } interface List extends Collection { … Iterator iterator(); ListIterator listIterator(); ListIterator listIterator(int index); … } Interface Iterator { boolean hasNext() ; Object next() ; void remove() ; } Interface ListIterator extends Iterator { boolean hasNext() ; Object next() ; boolean hasPrevious() ; Object previous() ; int nextIndex() ; int previousIndex() ; void remove() ; void set(Object o) ; void add(Object o) ; }

  36. Java Iterator Example import java.util.*; public class IteratorExample { public static void main(String[] args) { List ints = new ArrayList(); for(int i = 0; i < 10; i++) ints.add(new Integer(i)); Iterator e = ints.iterator(); while(e.hasNext()) System.out.println(((Integer)e.next()).intValue()); } }

More Related