1 / 34

Search for very low mass planets

STScI Conference May 2005. Search for very low mass planets. Michel Mayor. Geneva Observatory, Switzerland. Collaborators Geneva: F. Pepe, D. Queloz, S. Udry F. Pont, D. Ségransan, C. Lovis, A. Eggenberger, X. Bonfils, D. Sosnowska, R. Da Silva

cira
Download Presentation

Search for very low mass planets

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. STScI Conference May 2005 Search for very low mass planets Michel Mayor Geneva Observatory, Switzerland

  2. Collaborators Geneva: F. Pepe, D. Queloz, S. Udry F. Pont, D. Ségransan, C. Lovis, A. Eggenberger, X. Bonfils, D. Sosnowska, R. Da Silva ESO: D. Naef, C. Melo, G. Lo Curto Grenoble: C. Perrier, J.-L. Beuzit, X. Delfosse CFHT: T. Forveille OHP, Marseille: F. Bouchy, J.-P. Sivan, C. Moutou Bern: W. Benz, C. Mordasini Lisboa, Aveiro: N. C. Santos, A. Correia Tel Aviv: S. Zucker, T. Mazeh CFA: D. Latham La Laguna: G. Israelian et al. SA-Verrières: J.-L. Bertaux

  3. Outline • The quest for radial-velocity precision • Searching for very low-mass planets • Statistical properties of exoplanets: where theory meets observations • Open questions

  4. Models vs. observations Ida & Lin 2004 New HARPS candidates Rocky planets Icy planets Gaseous giant planets

  5. New HARPS Detections O-C < 2 m/s Lovis et al. 2005

  6. Models vs. HARPS detections Ida & Lin 2004

  7. The quest for radial-velocity precision

  8. The quest for radial-velocity precision and very low-mass planets A few milestones

  9. The quest for radial-velocity precision

  10. The quest for radial-velocity precision

  11. 1 m/s The HARPS planet-search program ESO 3.6 – La Silla - Geneva Observatory - Physikalisches Institut, Bern - Haute-Provence Observatory - Service d’Aeronomie, Paris - ESO

  12. Towards 1 m/s: Stability DRV =1 m/s Dl=0.00001 Å 15 nm on CCD 1/1000 pixel DRV =1 m/s DT =0.01 K Dp=0.01 mbar Vacuum operation Temperature control

  13. Cross-correlation spectroscopy with simultaneous thorium monitoring of the spectrograph drift • large wavelength • domain 3800-6900 A • high optical resolution • R = 115’000 • Very efficient use of • the Doppler information Cross-correlation function with optimal template  CCF (minimum for the best correlation)

  14. Thorium lines

  15. Simultaneous ThAr reference:Perfomances Mayor et al. 2003, The ESO Messenger

  16. Thermal stability Stability during one day: 0.001 K rms Stability during one year: <0.01 K Rupprecht et al., 2004

  17. Limitations of the RV method • Intrinsic stellar limitations • Stellar activity (amplitude  10-50 m/s) • Modeling -> correction of the effect? • (Saar et al., Kuerster et al.) • Diagnostics: photometry, bisector variation, CaII emission • Effect depends on star rotation and color • Sample selection -> biases? • Binary stars • SB2’s -> CCF width-depth anticorrelation • Observation dependent light mixing • Time-varying spectral blend • -> line shape variations • 3. Acoustic modes (asteroseismology) • -> Measurement precision and observation strategy

  18. Asteroseismology: all stars are “singing” HARPS commissioning acoustic modes visible in various spectral types: e.g. G2 - K1 IV/V amplitudes up to 10 m/s periods 4 – 20 minutes well-resolved with HARPS Mayor et al. 2003

  19. Asteroseismology on alpha cen B with HARPS • stellar pulsations: 40 cm/s rms (individual modes 10-20 cm/s) • photon noise of individual measurement: 17 cm/s • sum of all other errors: < 20 cm/s • - ThAr method • - instrument • - guiding • - atmosphere α Cen B α Cen B Series of 400 measurements over 8h

  20. Mu Ara: Acoustic modes 8 nights 250 measures/night Photon noise < 20 cm/s Importance of measurement strategy Acoustic mode Beating Expensive!

  21. Mu Ara: The System UCLES@AAT CORALIE@Swiss-1.2m HARPS@ESO-3.6m • Ara: G5V star with 3 planets

  22. Mu Ara c: A rocky (?) planet of 14 M All HARPS measurements: O-C = 0.9 m/s rms Asteroseismology only: O-C = 0.43 m/s rms

  23. A crop of Neptune-mass planets Mu Ara: P=9.5 days m2sini=14 MEarth Santos et al. 2004 Driver: asteroseismology -> many measurements 55Cnc : P=2.6 days m2sini=14 MEarth McArthur et al. 2004 Driver: inner planets characterisation -> many measurements Gl436 : P=2.8 days m2sini=21 MEarth Butler et al. 2004 M dwarf primary -> relatively “large” RV amplitude Expensive in observational time and needs adequate strategy But Theses objects should be very common HD xxxx b: P=15.6 days m2sini=15 MEarth Udry et al. 2005 HARPS GTO Programme

  24. 55 Cnc: a 4-planet system(McArthur et al. 2004) P=14.6 d e=0.02 M2sini=0.84 MJ P=2.8 d e=0.17 M2sini=14 MEarth P=44.3 d e=0.34 M2sini=0.21 MJ P=5360 d e=0.16 M2sini=4 MJ

  25. HD xxxx b: A new Neptune-mass planet

  26. Possible Kepler-COROT detection Orbit: P = 4.2 d e = 0 K = 0.77 m/s Radial velocities Precision = 0.5 m/s N=50 Mpl = 2 MEarth

  27. Short-period transiting planets Nb of Doppler measurements (1 m/s) needed to constrain the mass (10% level) of transit detected planets orbiting at 0.1 AU (HARPS 1 hour for mv = 13 / 2.5 hours for mv = 14)

  28. Big telluric planets?? Transit + Radial velocities Precise masses and radii Constraints on physics of intérior of the object Constraints for planetary formation processes Rsmall star ~ Rplanet

  29. D-burning limit The secondary mass function f(m2)~f(m2sini) (Jorissen et al. 2001) Tail up to ~20 MJup

  30. The secondary mass function Total detected exoplanets: 144 Of which discovered by ThAr technique: 68 (Elodie, Coralie, HARPS, Flames) Note: m2 sini < 18 MJup obswww.unige.ch/~naef/who_discovered_that_planet.html

  31. Open Questions • Planets orbiting intermediate-mass stars (m1 ~ 2 – 3 Msun ) • evolved stars (Sato, Lovis, Johnson) • Idem for planets orbiting A-F stars on the main sequence • (Galland, Hatzes) • Planets orbiting metal-poor stars • (Latham, Sozzetti, Santos) • Planets orbiting stars at the bottom of the main sequence • m1 < 0.5 Msun • Tail of the planet-mass distribution from 5 to 20 MJup • Very low mass planets as a critical test for planet-formation • scenarii • Search for transits of hot-Neptune planets (M-R relation) • Mass-period relation for short-period planets

  32. Planet period cumulative function RV exoplanets Stellar companions Migration stop - Magnetospheric cavity - Tidal effect - Roche lobe overflow - Evaporation Very Hot Jupiters ?

  33. Mass-period relation of transiting planets Mazeh, Zucker & Pont 2004 Transiting planets show a well-defined Period-Mass sequence Evaporation could play a role to remove light close gas giants (Baraffe et al. 2004) What about heavier hot Jupiters with P>3 days ? More data needed

  34. 5 MJup 17 MJup Light brown dwarfs - Massive planets! Chauvin et al. 2004 Definition of a planet ?

More Related