100 likes | 326 Views
讲 座 提 纲. 1 什么是分子育种 2 历史回顾 3 全基因组策略 4 基因型鉴定 5 表现型鉴定 6 环境 型鉴定 ( etyping ) 7 标记 - 性状关联分析 8 标记 辅助 选择 9 决策支撑系统 10 展望. 什么是分子育种?. 传统育种(玉米): 一把尺子一杆秤,用牙咬,用眼瞪 现代育种 : 利用标记提高选择效率 利用双单倍体加快育种进程 利用转基因实现基因的跨物种转移和性状的定向改造
E N D
讲 座 提 纲 1 什么是分子育种 2 历史回顾 3 全基因组策略 4 基因型鉴定 5 表现型鉴定 6 环境型鉴定 (etyping) 7 标记-性状关联分析 8 标记辅助选择 9 决策支撑系统 10 展望
什么是分子育种? 传统育种(玉米): 一把尺子一杆秤,用牙咬,用眼瞪 现代育种: 利用标记提高选择效率 利用双单倍体加快育种进程 利用转基因实现基因的跨物种转移和性状的定向改造 分子育种就是利用分子生物学和生物技术改进新品种的培育,以提高选择效率,加快育种进程,实现有目标的设计育种。 分子育种包括分子标记辅助育种和基因工程育种 (转基因 等)。 本报告仅涉及分子标记辅助育种。
Challenges in Crop Improvement Maize Goff and Salmeron 2004 Scientific American 291(2) 42-49
For scientists to conceive and breed potential varieties Yield gap 0 17.1 Nontransferable technology Environmental differences Yield gap I • Biological • Variety • Weeds • Pests • Problem soils • Water • Soil fertility • Socioeconomic • Costs • Credit • Tradition • Knowledge • Input • Instructions G A P Yield gap II 5 t/ha Actual Farm yield Theoretical potential Experimental Station yield Potential Farm yield Yield Gap to Be Filled by Plant Breeding Rice (Modified from Chaudhary 2000)
产量潜力的提高和产量差的缩小依赖于各种现代育种方法和综合的农艺措施。产量潜力的提高和产量差的缩小依赖于各种现代育种方法和综合的农艺措施。 分子标记辅助育种将发挥重要的作用。
Marker-Assisted Plant Breeding Markers Single markers Marker intervals Haplotypes Heterotic blocks/patterns LD/IBD blocks Association profiles Marker properties Genic/functional markers Neutral (background) markers Significant markers Methods Marker-assisted gene pyramiding (MAGP) Marker-assisted backcrossing(gene introgression) (MABC) Marker-assisted recurrent selection (MARS) Genomic selection(GS)
Why Marker-Assisted Molecular Breeding • Selection without testcrossing Restorability/maintainability, wide compatibility, heterosis • Selection independent of environments TGMS/PGMS, insect/disease resistance, stress tolerance Lodging resistance, herbicide response • Selection without intensive lab work Grain chemical and physical properties • Selection at early breeding stage Grain quality, heterosis, yield potential • Whole genome selection Xu, 2003. Plant Breeding Reviews 23:73-174. • Selection for multiple traits • Selection for complextraits
Marker-Assisted Plant Breeding Platform Natural and Artificial Crop Populations Phenotyping Platform Genotyping Platform E-typing Water Light Temperature Fertilizer Soil Large-Scale Multi-Location Phenotyping Yield and quality Biotic and abiotic stresses Input use efficiency Genotyping of Core Materials Chip-based array Genotyping by sequencing Transcriptome and proteome analysis Breeding Informatics Platform Marker Development and Gene Discovery Information Collection, Management and Data Analysis Genetic diversity analysis Gene function analysis GWAS/GS/MARS/MAS Decision Support System Generation Advancement +GS/MARS/MAS DS DS DS DS DS DS DS DS DS DS Multi-Environmental Trials Revised from Xu et al 2012 Mol Breed 29:833–854 Novel Germplasm
Genetic gains achieved for oil and protein content in 100 generations of selection (Dudley and Lambert 2004) QUESTION Can we achieve the same result in less years with marker-assisted plant breeding?
Heterotic groups generated through breeding in 8 decades A plot of the inbred scores on the first two principal components from analysis of SSR marker profiles of the parents of the maize hybrids (SS, Stiff Stalk Synthetic inbred line; NSS, Non Stiff Stalk Synthetic inbred line). (Cooper et al. 2004) QUESTION Can we diversify the heterotic groups much further and more quickly ?