1 / 40

Hemoglobin

Hemoglobin. 4 polypeptide chains A conjugated protein Contains HEME units (prosthetics) The heme binds O 2. The Heme group. porphyrin + iron(II). heme group. Allosteric Interactions. Binding of oxygen results in a conformational change. Deoxy Hb + O 2 Oxy Hb.

claire
Download Presentation

Hemoglobin

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Hemoglobin • 4 polypeptide chains • A conjugated protein • Contains HEME units (prosthetics) • The heme binds O2

  2. The Heme group porphyrin + iron(II) heme group

  3. Allosteric Interactions • Binding of oxygen results in a conformational change Deoxy Hb + O2 Oxy Hb • Conformational change makes binding additional O2 molecules easier (“cooperative binding”) • Hemoglobin is used primarily to bind and transport oxygen • MYOGLOBIN is used to store the oxygen

  4. http://www3.interscience.wiley.com:8100/legacy/college/boyer/0471661791/structure/HbMb/hbmb.htmhttp://www3.interscience.wiley.com:8100/legacy/college/boyer/0471661791/structure/HbMb/hbmb.htm http://upload.wikimedia.org/wikipedia/commons/0/07/Hb-animation2.gif

  5. Myoglobin, Mb • Similar to Hb, but only one peptide chain • Stores O2 • Binds O2 more strongly than Hb

  6. Affinity of Hb & Mb for oxygen

  7. When Working Out... • You produce lots of CO2 and lactic acid in muscles HbO2 + acid HbH+ + O2 HbO2 + CO2 HbCO2 + O2 • H+ and CO2 can bind to hemoglobin, making oxygen more available!!

  8. Chlorophyll

  9. 1 . L i g a n d E x c h a n g e D i s s o c i a t i v e D P P h 3 W ( C O ) W ( C O ) P h P W ( C O ) 6 5 3 5 A s s o c i a t i v e P P h P P h P P h 3 3 3 C l B r - C l O C I r C l O C I r O C I r B r B r P P h P P h P P h 3 3 3 R a d i c a l C h a i n P P h R 3 R e ( C O ) H R e ( C O ) P h P R e ( C O ) 5 5 3 4 - C O R - H H P h P R e ( C O ) 3 5

  10. d6 metal-silylene complexes Bond lengths29SiNMR shifts Cr-Si = 232.9 pm 136.9 ppm Mo-Si = 247.1 pm 119.3 ppm W-Si = 247.1 pm 97.7 ppm • Monosubstituted complex is observed, but disubstituted is the major product. Schmedake, T. A., Haaf, M. P., Paradise, B. J., Millevolte, A. J.; Powell, D., West, R.;.J. Organomet. Chem. 2001, 636, 17

  11. CO stretching frequencies • If L is a good s-donor and/or poor p-acceptor, the CO shift • If L is a poor s-donor and/or good p-acceptor, the CO shift s-donor / p-acceptor Schmedake, T. A., Haaf, M. P., Paradise, B. J., Millevolte, A. J.; Powell, D., West, R.;.J. Organomet. Chem. 2001, 636, 17

  12. CO stretches for Mo series Approximate trend for s-donor/p-acceptor ratios: N-heterocyclic carbenes > PR3 > PPh3 ~ 1 > 2 > P(OR)3 > P(OAr)3 Schmedake, T. A., Haaf, M. P., Paradise, B. J., Millevolte, A. J.; Powell, D., West, R.;.J. Organomet. Chem. 2001, 636, 17

  13. 2 . O x i d a t i v e A d d i t i o n - R e d u c t i v e E l i m i n a t i o n C H P P h 3 3 P P h 3 C H C l 3 O C I r C l O C I r C l P h P 3 C l P P h 3 I r ( I I I ) I r ( I ) P h O O + ( O C ) F e 4 ( O C ) F e C H P h C H 4 3 3 F e ( I I ) F e ( 0 )

  14. 3 . S i g m a B o n d M e t a t h e s i s H C H H 3 2 Z r C H Z r 4 H C H 3 M C H M C H 3 3 H H H H +

  15. 4 . M i g r a t o r y I n s e r t i o n R C l C l H Z r Z r C C H H H 2 R C p v i a C l C p Z r H R

  16. 4 . M i g r a t o r y I n s e r t i o n

  17. 5 . M e t a l H y d r i d e E l i m i n a t i o n P P h 3 H C O C 3 2 B r P d P P h 3 P P h C O C H 3 2 3 + B r P d H P P h 3 6 . N u c l e o p h i l i c A t t a c k o n C o o r d i n a t e d L i g a n d s P P h P P h O H 3 3 2 O H P h P P d P h P P d 3 3 C l C l

  18. 7 . T r a n s m e t a l l a t i o n P h P P h P 3 3 P d + P d B u S n + B r S n B u 3 3 P h P P h P B r 3 3 8 . C l e a v a g e o f C - M b o n d s b y e l e c t r o p h i l e s + H H Z r H

  19. Cross-Coupling Reactions

  20. The Stille Reaction palladium catalyst eletrophilic organic substrate X = halide or sulfonate stannane (transfer agent) alkyl = Me or Bu Milstein, D.; Stille, J. K. J. Am. Chem. Soc.1979, 101, 4992

  21. Relative transfer rates alkyl allyl ~ benzyl aryl vinyl alkynyl “PdL2” L = neutral ligand slow fast X = I, Br, OTf Milstein, D.; Stille, J. K. J. Am. Chem. Soc.1979, 101, 4992

  22. Advantages of the Stille Reaction • Tolerate a variety of functional groups • Largely insensitive to sterics on organic electrophile • Reactants are generally stable to air and moisture • Highly catalytic (turnover ~ 20,000) • A diverse array of functionalized organostannanes are readily available

  23. Limitations of the Stille Reaction • Tin compounds are toxic • Tin compounds are difficult to separate from products • Bulky vinyl stannanes don’t transfer efficiently • Alkyl groups on stannane are difficult to transfer selectively • Palladium catalyst can decompose before coupling is complete

  24. Putative Mechanism Casado, A. L.; Espinet, P. J. Am. Chem. Soc., 1998, 120, 8978

  25. Stille Coupling to Aryl Chlorides • P(t-Bu)3 ligand enhances the reactivity of Pd catalyst • Addition of fluoride activates the organotin reagent • Reaction appears to be general Littke, A. F.; Fu, G. C. Angew. Chem, Int. Ed. Engl.1999, 38, 2411

  26. Entry R % yield 1 2 3 4 5 82 98 87 94 82 Littke, A. F.; Fu, G. C. Angew. Chem. Int. Ed. Engl.1999, 38, 2411

  27. Selective Alkyl Transfer Vedejs, E.; Haight, A. R.; Moss, W. O. J. Am. Chem. Soc.1992, 114, 6556

  28. One Pot Stille Coupling Alternate Conditions: Maleczka, R. E.; Terstiege, I. J. Org. Chem.1998, 63, 9622

  29. One Pot Stille Coupling Alkyne Product Bu3SnH stepwise 89% 43% 87% 65% 51% 59% Maleczka, R. E.; Terstiege, I. J. Org. Chem.1998, 63, 9622

  30. Carbonylative Coupling Knight, S. D.; Overman, L. E.; Pairaudeau, G. J. Am. Chem. Soc. 1993, 115, 9293

  31. Tandem Stille Couplings Antonelli, E.; Rosi, P.; Lo Sterzo, C.; Viola, E. J. Organomet. Chem. 1999, 578, 210

  32. Tandem Stille Couplings Nicolaou, K. C.; Xu, J.; Murphy, F.; Barluenga, S.; Baudoin, O.; Wei, H.; Gray, D. L.; Ohshima, T. Angew. Chem. Int. Ed.1999, 38, 2447

  33. Nicolaou, K. C.; Xu, J.; Murphy, F.; Barluenga, S.; Baudoin, O.; Wei, H.; Gray, D. L.; Ohshima, T. Angew. Chem. Int. Ed.1999, 38, 2447

  34. The Suzuki Reaction Boronic acid Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457

  35. Suzuki

  36. Suzuki with boronic esters

  37. Heck Coupling JACS, 2002, 124, 6552

More Related