1 / 10

Iterative Integer Division Techniques

Learn about various techniques including Radix-r, Binary, Integer-FP division, SHR-Divisor, SHL-Partial-Remainder methods to perform integer division efficiently. Understand handling V with leading 0’s for accurate results in computer/digital hardware. Practice methods for n-bit divisions and 2's complement division.

Download Presentation

Iterative Integer Division Techniques

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Iterative Integer Division Techniques Shantanu Dutt UIC

  2. 088 = Q V = 4 353 = D - 0 353 - 32 033 - 32 001 = R Division – Basics • SHR-Divisor Method: Start subtraction of V from left most position of D, considering as many digits of D as there are in the V (ignoring leading 0’s). After subtraction, consider the next lower digit of D (i.e., in the “partial remainder”), and align D*(current Q digit) so that LS digits align, and subtract from the PR from that digit to its MS non-0 digit. This is almost equivalent to a SHR V for next subtraction every iteration. • Radix r division is essentially a trial-and-error process, in which the next quotient bit is chosen from 0, …, r-1 • Binary division is much simpler, since the next quotient bit is either a 0 • or 1 depending on whether the partial remainder is less than or greater • than/equal to the divisor, respectively • Integer division: Given 2 integers D the dividend and V the divisor, we • want to obtain an integer quotient Q and an integer remainder R, s.t. • D = V.Q + R, R < V • Integer–FP division: Given 2 integers D the dividend and V the divisor, we • want to obtain a floating-point (FP) or real quotient s.t. • D ~ V.Q

  3. 088 = Q V = 4 353 = D - 0 353 - 32 033 SHL: 330 - 32 01 = R Division – SHL-Partial-Remainder Method 0111 = Q • Instead of shifting the divisor right by 1 bit, the partial remainder can be shifted left by one bit (in non-binary case, if the current Q bit is non-zero) V = 100 011101 = D - 000 011101 011101 SHL: - 100 01101 01101 SHL: - 100 0101 SHL: 0101 - 100 001 = R • If D is n bits and V is k bits (ignoring leading 0’s), perform n-k+1 iterations of the SHL & subtract process

  4. 0111 = Q V = 100000 011101000 = D - 000000 011101000 011101000 SHL: - 100000 01101000 01101000 SHL: - 100000 0101000 SHL: 0101000 - 100000 001000 = R’ Division – Handling V with leading 0’s • Some higher order bits of an n-bit V are 0’s • One of the main requisites of correct division by repeated subtraction is that the portion of D (in general the partial remainder) from which V is being subtracted be < 2.V, since the Q bit can only be 0 or 1 • Note that for 6-bit division (n=6), V is stored as a 6-bit # (000100) in the computer. The type of manual adjustment done in the above example of converting 6-bit subtractions into 4-bit ones (in general, n-bit subtractions into k-bit ones, k < n, k is the most significant 1’s position in V) is impractical in digital hardware (though a complex circuit may be designable to do variable-bit division) • Method 1: • Shift V to the left by n-k-1 bits (until its MSB=1), and perform the div. for n-k steps (equivalently D is considered a n+n-k-1 = 2n-k-1 bit #) • Divide remainder R’ of this process by 2n-k-1 (SHR by n-k-1 bits) to get final remainder R

  5. Division – Handling V with leading 0’s 000111 = Q • Method 2: Augment D to the left by n-1 0’s, making D a (2n-1)-bit #, while V remains an n-bit #. Perform the division for n iterations • Note that this ensures that at least in iteration 1: • The MS n bits of D < 2V. It can be proved that this will be true at the beginning of every iteration, i.e., after subtraction and SHL of the previous iteration V = 000100 00000011101 = D - 000000 00000011101 00000011101 SHL: - 000000 • This is the type of division algorithm used in a computer/digital-hardware 0000011101 0000011101 SHL: - 000000 000011101 SHL: 000011101 - 000100 00001101 SHL: 00001101 - 000100 00000101 SHL: 0000101 - 000100 000001 = R

  6. 16 16 16 16 16 and also n-bit n’th n-bit

  7. SHL

  8. 2’s Complement Division

More Related