670 likes | 823 Views
Nuovi rivelatori e tecniche nell’astrofisica dell’UV. Emanuele Pace Dipartimento di Astronomia e Scienza dello Spazio Università di Firenze. UV astronomy. Most of the emission of hot thermal processes occuring in a wide variety of astrophysical enviroments peak in the UV.
E N D
Nuovi rivelatori e tecniche nell’astrofisica dell’UV Emanuele Pace Dipartimento di Astronomia e Scienza dello Spazio Università di Firenze
UV astronomy Most of the emission of hot thermal processes occuring in a wide variety of astrophysical enviroments peak in the UV. UV spectroscopic and imaging capabilities are a fundamental tool to study plasmas at temperatures in the 3,000-300,000 K range. Electronic transitions of the most abundant molecules in the universe (H2, CO, OH, CS, CO2+, CO2) are in the UV.
UV eyes IUE, HST, GALEX, FUSE, …
WSO-UV Payload • HIRDES: R 55000 echelle spectrographs: • UVES (178-320nm) • VUVES (102-180nm) • LSS: 102- 320 nm,R~1500–2500 long slit (1x75 arcsec) spectrograph • FCU: 3 imaging cameras • FUV : scale=0.20 “/px; FoV= 6.6x6.6 arcmin2 • NUV : scale=0.03 “/px; FoV= 1.0x1.0 arcmin2 • UVO : scale=0.07 “/px; FoV= 4.6x4.6 arcmin2
NUV Camera on axisOptical Bench 1000 mm Telescope Focal Plane 5 mm Aspherical Mirror M2 Pick Up Mirror Image (MCP) 40 mm Spherical Mirror M1 500 mm S. Shore, E. Pace
Proposed operating mode • High resolution NUV imaging • Slitless multi-object spectroscopy • Slitless multi-object polarimetry • Slitless multi-object spectro-polarimetry
Wollaston Detector Dispersive element filter Conceptual scheme Advantage of Wollaston: two fields in one image BUT! The material must be carefully selected The refraction index of MgF2 is not constant Calibration is an issue: filters, prism and detector must be carefully selected and calibrated
NUV Spectra on MCP Grating 60 linee/mm R=100 Grating 90 linee/mm R=100 All fields Orders -1,0,+1
Output Signal from an optical system S B A W T h Telescope aperture large primary mirror spatial resolution Detector high sensitivity high quantum efficiency high S/N
Technological issues for large area space optics • Weight • a conventional 3 m lens or mirror is too heavy (> 1000 kg) for any reasonable spacecraft • Ultra-lightweight optics required • Surface quality • A sufficient optical surface quality must be guaranteed after launch and under orbital condition • Active surface control possibly needed • Deployment • 3 m is about the maximum diameter possible with available launchers (2.5 m for Shuttle) • In orbit mechanical deployment necessary
Concept of thin glass active mirrors Mass~ 5 Kg/m2
ALC : Advanced Light Collectors • Feasibility study of deployable and active large mirrors • Consortium: CNR-INOA, INAF-Arcetri, CGS • ESA contract • Submitted proposal for producing a demonstrator
NASA conceptual study: OWL Deployable Schmidt camera During deployment Packaged in the spacecraft
Deployable large mirrors Primary mirror: Ø≤ 8 m
Trusses support structure (CFRP) Stiffening ribs (CFRP) Primary mirror: deployment kinematics EMC actuators for each petal: front and back sides
Propulsion System Deployment kinematics and mechanisms Primary Mirror Secondary Mirror Power System Baffle Telescope design
Ideal UV detector for space Very low noise Radiation hardness REQUESTS High sensitivity Large area Solar blindness Chemical inertness
Charge Coupled Devices (CCD) CCD di EIT/SOHO
UV CCD Quantum yield improves the detector sensitivity Ne =Eg(eV) / 3.65 eV DQE =Neh
Backside CCD • Back illumination • Wafer thinning • Ion implantation • Laser annealing
UV CCD Quantum yield improves the detector sensitivity Ne =Eg(eV) / 3.65 eV DQE =Neh
CCD – spectral response Courtesy of L. Poletto et al., Università di Padova
d-doping JPL/USA – California Institute of Technology A boron thin layer is deposited on the back surface through molecular beam epitaxy (MBE)
d-doped CCD – spectral response S. Nikzad et al, 2003
Limits of CMOS - APS • Still high Readout noise • Low quantum efficiency (< 50%) • Low filling factor (circa 50%) • Limited dynamic range (12-bits in analog mode) • Spectral range centered on the visible Ref. N. Waltham, RAL, UK
Wide bandgap materials: Diamond Appealing materials for XUV photon detection. The main properties are hereafter summarized : • Eg = 5.5 eV dark current < 1 pA visible rejection (ratio 10-7) high XUV sensitivity • Highly radiation hard • Chemical inert • Mechanically robust • High electric charge mobility = fast response time • Low dielectric constant = low capacitance
Diamond detectors in Italy • Università di Firenze (E. Pace) • Univ. di Roma Tor Vergata (M. Marinelli) • Università di Reggio Calabria (G. Messina) • INAF–Osservatorio di Catania (S. Scuderi)
MATERIAL PROPERTY IMAGER PROBLEM SYSTEM SOLUTION SYSTEM PENALTY Back support Difficult to thin Severe cleanliness Requirements Low young's modulus Cooling Dark current Power hungry Small band gap More optics Visible light response Heavy Reactive surface Phosphor, coating Unstable UV response Vibration problems Weak Bonding Shielding Bulk radiation damage Magnetic torque on spacecraft Hybrid Why diamond? Higher performances No cooling Less optics & no filters No coatings No radiation shielding Mechanical hardness Low power Light system Long durability Clean environment SPACE SYSTEM IMPROVEMENT
hν hν Coplanar geometry Transverse geometry Diamond photoconductors
Interdigitated electrodes Diamond layer Detector technology
pCVD E. Pace et al., Diam. Rel. Mater. 9 (2000) 987-993. 100 E = 2.8 V/mm UV/VIS > 108 10 1 0,1 External quantum efficiency 0,01 1E-3 1E-4 1E-5 1E-6 1E-7 1E-8 Wavelength (nm) 200 400 600 800 1000 Electro-optical performance R = I/Pott
pCVD scCVD Quantum efficiency
[1] [2] Comparison [1] Naletto, Pace et al, 1994 [2] Wilhelm et al.,1995