150 likes | 163 Views
JHF 原子核 実験計画とエレキに対する要求 Strangeness Physics を中心に. 東北大理 高橋俊行. 1. JHF で行う実験 Strangeness Nuclear Physics Part 2. Beam Line Detector System 3. DAQ System への要求. Experimental Facility – 50GeV PS –. PS Parameter Intensity 3.2 x 10 14 ppp Duration 3.42 sec Extraction 0.7 sec.
E N D
JHF原子核 実験計画とエレキに対する要求 Strangeness Physics を中心に 東北大理 高橋俊行 1. JHF で行う実験 Strangeness Nuclear Physics Part 2. Beam Line Detector System 3. DAQ System への要求
Experimental Facility – 50GeV PS – PS Parameter Intensity 3.2 x 1014 ppp Duration 3.42 sec Extraction 0.7 sec Beam Lines ( 1期計画 ) K1.8 K1.1 P [GeV/c] 1.0 – 2.0 0.5 – 1.1 Intensity K-(1.8): 1.5x107 K-(1.1): 1.5x107 @1x1014 ppp K+(0.8): 1x107 Length [m] 40 25 K/p 2-5 Beam Lines ( 2期計画 ) HR: High Intensity: p 109 High Resolution: Dp/p = 10-4 Primary: Primary Beams of p & Ion High Intensity Kaon Beams are available !
Strangeness Physic Programs 1. Study of S = -2 System 1-1. Spectroscopy of X Hypernuclei by (K-,K+) Reaction 1-2. Study of LL-Hypernuclei by Sequential Pionic Decays 1-3. Study of Double Strangeness Nuclei by an Emulsion-Counter Hybrid Method 2. Hyperon-Proton Scattering 2-1. Cross Sections for X-p Elastic and X-p -> LL Reaction 2-3. Polarization for Lp and S+p Elastic Scattering 3. High Resolution Spectroscopy of S = -1 Hypernuclei 3-1. g-Spectroscopy with Ge-Detectors (HyperBall) 3-2. High-Resolution Reaction Spectroscopy by (p, K+) Reactions
1-1. Spectroscopy of X Hypernuclei High Momentum Transfer Reaction -> well-separated peak structure (Single-particle States) X single particle potential, effective X N Interaction (K-, K+) Reaction at 1.8 GeV/c 1.2GeV/c for K+ Targets: 28Si, 58Ni, 208Pb Energy Resolution: 2MeV(FWHM) Intensity: 1 x 107 [/sec] Beam Spectrometer:Dp/p=2x10-4@1.8GeV/c Tracking Type, K- Selection K+ Spectrometer: Dp/p=2x10-4@1.2GeV/c 50 msr SKS + (D ) + Q Good Particle Identification
1-2. LL Hypernuclei by Sequential Pionic Decays High-Statistics LL Hypernuclei Detection by Counters X- Production by (K-,K+) Reaction Double L Compound States Formation Double L Fragment Detect Sequential Pionic Decays ( 2 monochromatic p- ) Medium Resolution Beam and K+ Spectrometer Beam Intensity: 1x107 [/sec] Pion Spectrometer: Dp=3MeV/c @ 100MeV/c Large Acceptance Cylindrical Detector System (CDS) Upgrade of BNL-AGS E906 10 times higher beam intensity
1-3. Double Strangeness Nuclei by an E-C Hybrid Method LL Interaction H-dibaryon ? E174 -> E373 -> JHF Exp. Obs. of LL 103 stopped X-events 104 events Hypernucleus Beam: 105K-/spill, K-/p- >10, small size K+ Spectrometer: Large Acceptance, Short Flight Path ( KURAMA) Tracker: double-sided SSD ~10mm resolution SCIFI <105 Hz Operations Large-size Image Data 3-stage Trigger System & Fast DAQ System
2. Hyperon Proton Scattering Baryon-Baryon Interaction extending to SU(3) space Meson Exchange Picture or Quark Picture ? Lack of the Experimental Data E251: S+p ->S+p E289: S+p ->S+p, Lp ->Lp, S-p ->S-p using SCIFI Detector as Production and Scattering Targets JHF: X- production via (K-, K+) at 1.6 GeV/c 1x107 [/sec] Observe X-p ->X-p, X-p -> LL
3.1 Hypernuclear g-Ray Spectroscopy Observe Hypernuclear Levels with Ultra-High Resolution of 2 keV by Ge Detectos Level Energy -> ( Effective ) YN (Spin-Dependent) Interaction B(El), B(Ml) -> Impurity Effects, Nuclear Medium Effects Table of HyperIsotopes Hypernuclear States Identification (K-, p-) Reaction with 3MeV Resolution Beam: K- 0.8/1.1/1.8GeV/c, 2x107 [/sec] p-Spectrometer: Large Acceptance Good Resolution HyperBall: Large Solid Angle as 40% of 4p Segmented Ge Detectors + BGO Suppressors Transistor Reset Type Preamplifier + UHA
3.2 Reaction Spectroscopy with (p, K+) Reaction A few 100 keV Resolution Reaction Spectroscopy of S=-1 Hypernulei Fine Structures above Particle-Decay Threshold <->g-Spectroscopy Coulomb-Assisted Hybrid S-Hypernuclear Bound States Neutron-Rich L Hypernuclei by Two Step (p-, K+) Reaction • Beam Line 1–1.5 GeV/c • 109 [/sec] Intensity • 10.6 [cm/%] Dispersion • K+ Spectrometer • Focal Plane Type • Dp/p = 10-4 • Vert. Mag. (R33): -3.084 • Mom. Accpt.: ±5% • Solid Angles: 16msr • K+ Survival: ~0.1
JHFで要求されること – Beam Tracking 1 – • Beam Intensity 107 [/sec] 以上 • これまでの経験 5x106[/sec] with 5mm spacing DC & S.H.TDC (K6) • 200mm(s)程度の位置分解能 • (低物質量) • <2x107[/sec]: 3mm spacing DC + M.H.TDC • 1mm MWPC >2x107[/sec]: 0.5mm MWPC Scintillation Fiber (0.5-1.0mm Pitch) Hodoscopes ? ビームサイズ10cmでのWireあたりの平均Rates Gate Time Rates/Wire@107[Hz] 3mm DC 100 ns 3x105 [Hz] 1mm PC 50 ns 1x105 [Hz] 0.5mm PC 50 ns 5x104 [Hz] MHzに近いRateでの動作が求められる。 PreAmp. 数10ns のIntegration Time Amp. P.Z.C & Base Line Restore
JHFで要求されること – Beam Tracking 2 – K1.8 Beam Spectrometer (QDQDQ) Effective Area: 20cm x 10cm 程度として Entrance: 0.5mm PC ( x, u(30), v(-30), x’ ) x 2 x: 400 u,v: 512 Total: 3648 channels Exit: 3mm DC ( x, x’, u(15), u’, v(-15), v’ ) x 2 x,u,v: 64 Total: 768 channels System全体( PreAmp. Discri, TDC, etc )のコンパクト化が重要 1. SONY ASD chip (4ch./chip)
Trigger Rates (K-,K+) Reaction の実験 AGS-E906 (K-,K+) 48D48 Spectrometer ( msr) Be (15cm, ) Target 2 AC, 1 LC 600 Triggers / 1.5x106 K- これから推測すると、JHF( several x 107K-)では、 数kHz~10kHzの1st Level Trigger Rates (K-,p-) Reactionの実験 K- -> m-n Decay が Main Background Trigger Decay Arm ( Ge-detector, etc ) をRequire しても、2kHz程度 2nd Level ( Mass Selection Trigger ) が必須 それでも、数kHzで取れるDAQSystemが必要 ADC, TDC のConversion Time 10ms以下
Data Size Beam & Scattered Spectrometer: 400 words/event with Pedestal Suppression これにCoincidence Detectorのデータが加わる。 HyperBall: 30 words * Multiplicity CDS: 100 words SSD: ~50 words [ 3 Charge Info./track ] SCIFI Image: Very Large ( Transfer Time 45ms for 10MHz Clock) Spectroscopy Exp. でも A) 400 [words/event] x 2000 [triggers/sec] = 3.2 [Mbytes/sec ] B) 1 PS-Cycleでは、2.5 Mbytes を 2 sec. 程度で読み出し、記録する。 B) については、現在、将来の計算機Powerを考えれば、問題ない。 A) については、TKO ( 0.5~ 1?ms/cycle )では、苦しい。 FASTBUS ( 10Mwords/sec ) 程度の転送Speedが必要
TKO の限界 Dead time 10% で、2kHz でとるためには、ConversionとReadoutを含めて、 50 msでしか許されない。 0.5 ms/cycle だとすると、Conversion Timeを無視しても、100 scan しかできない。 1. Conversion Time: Module 全体平均で、10 ms のADC, H.R.TDC, M.H.TDC 2. Module にData Suppressionの機能を持たせる。 FIFO 形式で読み出せる。 3. Multi Event Buffer を持たせる? 4. 10 M words/sec 以上のSpeedのReadout Bus 5. PS Cycle 中のData Buffering
まとめ 1. JHFでは、これまでにないほどの強度のK-ビームが得られ、 S = -2ハイパー核の高統計実験 YN散乱の高統計実験 S=-1 ハイパー核での超高分解能・高統計実験 が可能となり、Strangeness 核物理の分野が飛躍的に進む。 核力の問題、高密度物質(Strangeness Matter)のなぞに迫る。 2. 10 MHz を超える Rate のビームを扱う検出器が必要。 High Rate, Compact な Chamber Readout System 3. Trigger Rates 2kHz , 500 words/event をDead Time 10%以下で取れる DAQ System が必要。