640 likes | 838 Views
高能物理分会年会 2008. 中微子和味物理. 吴岳良 中国科学院理论物理研究所 中国科学院卡弗里理论物理研究所 2008.4.26 南京大学. 味物理 ?. Up Quark, Down Quark, Strange Quark …? + e 、 _e , ICFP2001 Gell-Mann & Fritzsch on the way to Lunch Quantum Number: “Flavor” Flavor Physics: Physics on Quark Flavor and Lepton Flavor
E N D
高能物理分会年会2008 中微子和味物理 吴岳良 中国科学院理论物理研究所 中国科学院卡弗里理论物理研究所 2008.4.26 南京大学
味物理 ? Up Quark, Down Quark, Strange Quark …? + e、 _e , ICFP2001 Gell-Mann & Fritzsch on the way to Lunch Quantum Number: “Flavor” Flavor Physics: Physics on Quark Flavor and Lepton Flavor CP Violation, Neutrino Physics, B Physics, Charm (J/ψ) Physics, Hadron Physics, New Physics on Flavors, ……
标准模型 规范相互作用 夸克禁闭之谜 味物理之谜 标量相互作用 标量场作用势 对称破缺之谜 引力相互作用 暗宇宙之谜 真空相互作用 能量标度之谜
中微子 1930 Pauli:中微子-s=1/2、NWIP、m < m_e 年仅三十岁的年青理论物理学家为解救在衰变中能量不守恒问题以及解释 衰变中遇到的自旋和统计问题,大胆地提出了中微子这个新粒子的存在 1933 Fermi: H_3 He_3 + e + \bar 1957 Lee & Yang, 宇称不守恒(诺贝尔物理奖) CS Wu:宇称破坏实验 1957 Landau, Lee & Yang, Salam 中微子没有质量 m_ =0、二分量理论、 最大宇称破坏 1958 Feynman-Gell-Mann, Marshak-Sudarshan V-A 理论 50周年!!! 1967 GWS 标准模型: 中微子无质量(诺贝尔物理奖)
1957 Pontecorvo 中微子质量、中微子混合、中微子振荡 _e anti-_e 1957 R.Davis: 反应堆实验 anti- + Cl_37 e + Ar_37 1962 莱特曼(Lederman),施瓦茨(Schwartz) 和斯坦贝格(Steinberge) (获得了诺贝尔物理奖) Brookhaven _ 1962 MNS – Maki-Nakagawa-Sakata 混合角 1967 Pontecorvo _e _ 太阳中微子 失宗 ½
1967 Davis 开始太阳中微子 实验 • 1969 Gribov & Pontecorvo 提出 Majorana-type 中微子混合 • 1976 Bilenky & Pontecorvo • Dirac-type 中微子混合 • 1979 Wolfenstein 中微子振荡的物质效应 • 1979 See-Saw 机制 + 大统一理论 • 中微子物理变成热门课题 • 1994: ‘1,3,5 ’ - Massive, ‘ 2,4,6 ’ -Massless, 7 - No think 1998.6Super-Kamiokande 实验组, 中微子振荡 中微子有质量
中微子之谜 许多基本问题到目前为止仍然不清楚 中微子是Dirac粒子还是Majorana粒子? 中微子质量的绝对值有多大? 中微子质量是不是几乎简并的? 与中微子有关的CP破坏如何? 中微子的种类,Sterile中微子? 中微子轻子数不守恒与物质-反物质不对 称的联系怎样? 中微子对宇宙大尺度的演化以及天体物 理中的奇特现象(超新星暴发等)起着怎样 的作用?
理论问题 为什么中微子质量比带电轻子和夸克小得多? (约为电子质量的百万分之一,为最重的顶夸 克质量的十万亿分之一) 为什么中微子混合角比夸克混合角大得多 2-3混合角23是否严格地最大? 13混合角数值的大小,Ue3 0? 中微子质量的等级问题 m312 > 0?or m312 < 0?
在5.3s范围内发生味转化! Solar neutrino: SNO 太阳内部核反应过程产生的中微子只有 arXiv:nucl-ex/0610020
Reactor neutrino: KamLAND arXiv:0801.4589 A scaled reactor spectrum without distortions from neutrino oscillation is excluded at more than 5σ! Oscillation parameters:
Atmosphere neutrino: Super-K Oscillation parameters:
Neutrino oscillation 中微子振荡公式: J. Valle et al. hep-ph/0405172, updated at Sep 2007 太阳: Super-K, SNO 大气: Super-K 反应堆:KamLAND, CHOOZ 加速器:K2K,MINOS
Issues and Test in neutrino physics 1. Dirac / Majorana Neutrinoless Double Beta Decay 2. Mass scale: m1 Neutrinoless Double Beta Decay, Single Beta Decay, Cosmology 3. Mass spectrum: Normal, Inverted, Degeneracy 4. How small is θ13, θ23 maximal? 5. Leptonic CP violation 6. 3 flavor unitarity? 7. 4 generation, LSND? MiniBooNE Excludes at 98% CL two-neutrino appearance oscillations as an explanation of the LSND anomaly. arXiv:0704.1500 (3+1): inconsistency at the level of 4σ. (3+2) ,(3+3): severe tension at the level of more than 3σ. arXiv:0705.0107
Neutrino masses 1. Cosmology (CMB+LSS): Planck: 0.025-0.1 eV 2. Single Beta Decay KATRIN: 0.2 eV 3. Neutrinoless Double Beta Decay CUORE: 0.02-0.1 eV Strumia-Vissani arXiv:hep-ph/0503246
Global fits: 3σ Kam-Biu Luk, Jan 8 2007 Int'l Symp on Neutrino Physics and Neutrino Cosmology arXiv:hep-ph/0509019
N Seesaw mechanism Type II? Type III? Leptogenesis Mechanism Fukugita & Yanagida (1986):
Other mechanism for neutrino masses E. Ma, PRD 73, 077301, 2006 Two Higgs doublets Model: S or A may be Dark Matter! R. Barbieri, L. Hall and V.S. Rychkov, PRD 74, 015007, 2007 3 loop generation of neutrino masses: L.M. Krauss, S. Nasri and M. Trodden, PRD 67, 085002, 2003 Right-handed neutrino as Dark Matter!
Family symmetry Tri-Bimaximal Mixing: (Harrison,Perkins and Scott) Friedberg-Lee Symmetry: 相关文章: Xing, Zhang, Zhou, PLB641 Luo, Xing, PLB 646 C.S. Huang, T.J. Li, W. Liao and S.H. Zhu, arXiv:0803.4124 hep-ph/0606071 Invariant under Friedberg-Lee symmetry: z a space-time independent constant element of the Grassmann algebra
F. Harrison, D. H. Perkins and W. G. Scott, Phys. Lett. {\bf B 530}, 167 (2002) • Z.-Z. Xing, Phys. Lett. {\bf B533}, 85(2002). • P. F. Harrison and W.G. Scott, Phys. Lett. {\bf B535},163(2002). • P.F. Harrison and W. G. Scott, Phys. Lett. {\bf B557},76(2003). • X. G. He and A. Zee, Phys. Lett. {\bf B560}, 87(2003). • C.I. Low and R. R. Volkas, Phys. Rev. {\bf D68}, 033007 (2003). • E. Ma, Phys. Rev. {\bf D70}, 031901R(2004); E.Ma, hep-ph/0701016 • G. Altarelli and F. Feruglio, Nucl. Phys. {\bf B720}, 64(2005); • E. Ma, Phys. Rev. D72, 037301 (2005).; • E. Ma, Mod.\ Phys.\ Lett.\ A 20, 2601 (2005) • A. Zee, Phys. Lett. {\bf B630}, 58 (2005). • E. Ma, Phys.\ Rev.\ D {\bf 73}, 057304 (2006). • G. Altarelli and F. Feruglio, Nucl. Phys. {\bf B741}, 215(2006). • W. Grimus and L. Lavoura, {\bf JHEP}, 0601:018(2006). • J.E. Kim and J.-C. Park, {\bf JHEP} 0605:017(2006). • N. Singh, M. Rajkhowa and A. Borach, hep-ph/0603189. • R. Mohapatra, S. Naris and Y.-H. Yu, Phys.Lett. {\bf B639} 318 (2006). • P. Kovtun and A. Zee, Phys.Lett. {\bf B640} (2006) 37. • N. Haba, A. Watanabe and K. Yoshioka, Phys.Rev.Lett. 97 (2006) 041601. • X.G. He, Y.Y. Keum and R. Volkas, {\bf JHEP}, 0604:039(2006). • Varizelas, S.-F. King and G.G. Ross, Phys.Lett. B644 (2007) 153. • R. Friedberg and T. D. Lee, arXiv:hep-ph/0606071; arXiv:hep-ph/0705.4156 • B.Hu, F. Wu and Y.L. Wu, Phys.Rev. {\bf D75} 113003 (2007).
SO(3) Family Gauge ModelNearly Tri-bimaximal Neutrino MixingYLWarXiv:0708.0867 Lagrangian for Yukawa Interactions
After fixing gauge With S_3/Z_3 symmetryConsidering an appropriate vacuum structure
U(1) Family symmetry Generalized see-saw mass formula Approximate U(1) Family Symmetry implies Namely
Neutrino Mixing • q
Applying the Mechanism of Approximate U(1) Family Symmetry • Vector-like heavy Majorana masses
Taking Optimistic Predictions Which can be detected by the future neutrino Experiments, like Daya Bay
Vector-Like Heavy Neutrino and Charged Lepton Masses Taking and It leads to and Taking The lightest vector-like charged lepton mass Which may be detected at LHC/ILC
TeV physics and LHC Search for signals of Majorana neutrinos at hadron colliders 10−80 GeV for the Tevatron 10 − 400 GeV for the LHC T. Han and B. Zhang, PRL 97, 171804 2006 S. Bray, J. Lee, A. Pilaftsis, arXiv:hep-ph/0702294. B. Bajc, M. Nemevsek, G. Senjanovic, PRD 76, 055011 2007. F.Almeida, et al., PRD 75, 075002 2007. F.Aguila, et al., JHEP 0710, 047 2007. M.L. Graesser, arXiv:0705.2190. J. Kersten, A.Y. Smirnov , PRD 76, 073005 2007. W. Chao, S. Luo, Z.Z. Xing, S. Zhou, PRD 77, 016001 2008. Z.Z. Xing, PLB 660, 515 2008. C.S. Chen, C.Q. Geng, D.V. Zhuridov, arXiv:0801.2011. K. Huitu, S. Khalil, H. Okada, S.K. Rai, arXiv:0803.2799. S. Bar-Shalom , G. Eilam, T. Han, A. Soni, arXiv:0803.2835. P.F. Perez, T. Han, et al., arXiv:0803.3450. W. Chao, Z.G. Si, Z.Z. Xing, S.Zhou, arXiv:0804.1265.
味物理 Issues and Puzzles in B Meson Deacys
Puzzles in decays ~ (0.1~0.2) ~1.0 — ~ O(10^-2)
Puzzles in decays In Theory: Data:
理论计算结果 Branch ratios in PQCD factorization H.N Li,S.Mishima and A.I. Sanda,Phys.Rev.D72:114005,2005.
QCD 因子化方案的计算结果: Mode Branch ratio CP violation Martin Beneke & Matthias Neubert, Nucl.Phys.B675(2003)
Y.L.Wu &Y.F.Zhou Phys.Rev.D72:034037,2005 GLOBAL FIT Scenario C B A Fit only to pipi
在 系统中分别作分析 Yue-liang Wu, Yu-Feng Zhou, Ci Zhuang Phys.Rev. D74 (2006) 基于目前的实验数据,得出以下结果:
基于最新的实验数据 作模型无关分析可得出: 而在实验允许范围内, |C’/T’| 和色压低树图的 强相位的关系见右图。 Yue-liang Wu, Yu-Feng Zhou, Ci Zhuang Phys.Rev. D74 (2006)
可能的解决方案: • New Physics Effects • A new weak phase or strong phase in Electro-weak penguin canalleviate the discrepancy Yue-liang Wu, Yu-Feng Zhou, Ci Zhuang,Phys.Rev. D74 (2006) • Enhanced Electro-weak penguin amplitude can alleviate the discrepancy Andrzej J. Buras, Robert Fleischer, etal.Eur.Phys.J.C45 (2006 ) • Charming Penguin contribution Can not! Yue-liang Wu, Yu-Feng Zhou, Ci Zhuang, arXiv:07122889v2
Summary • Current charmless B decay data provide precise information on weak phase in agreement with the indirect SM fits. Model independent analysis based on flavor SU(3) symmetry indicates significant strong phases in hadronic amplitudes. The Origin of the strong phases is still not clear. • The color suppressed tree diagram C seems doesn’t work well. The FSI can not explain the puzzle. Possibility of large electro-weak penguin exists and is a probe of new physics.
双Higgs二重态模型下B->VV过程的研究 S.S.Bao,F.Su,Y.L.Wu & C.Zhuang,arXiv:0801.2596 (to be published on PRD) 对多数的B物理衰变过程来讲,标准模型框架下,理论和实验符合的很好,但还有一些在标准模型中无法解释的衰变过程,如 puzzle的问题,大的 分支比以及在 中大的横向极化等,引入新物理贡献来解决这些问题是目前B物理研究的一个重要课题。 在CP自发破缺的双Higgs二重态模型中(Type III 2HDM),用推广的因子化方法计算B->VV衰变,探索新物理对VV过程的分支比及CP破坏的影响。
electroweak penguin-dominated decays: 分支比很小,目前还没有精确的实验结果。 • Pure weak annihilation decays: 分支比大多很小,我们没有考虑。 • 双Higgs二重态模型下,对衰变分值比的影响很小,和标准模型的结果几乎一致。但是由于引入了新的CP破坏源,对于一些衰变道的直接CP破坏的影响比较明显,如: 等。
过程的研究及QCD动力学性质 Fang Su, Yue-Liang Wu, Ya-Dong Yang, Ci Zhuang, hep-ph/07051575 理论方面的困难: 归结为如何有效地计算 强子矩阵元。目前主要有简单因子化方法,推广的因子化方法,微扰QCD方法,QCD因子化方法及软共线理论(SCET)等。 期望用一种简单的方法,即通过引入胶子动力学质量消除端点发散和Cutkosky rule相结合的方法来处理B介子衰变问题。考虑 过程,将预言值与其他理论方法相比较,来检验我们的方法是否具有可行性。
所考虑的过程有: • color-allowed 过程 • Cabbibo double suppressed 过程 • color-suppressed 过程 • color-allowed + color-suppressed 过程
1 、 过程的有效哈密顿量为: 其中 是四夸克有效算符, 为Wilson 系数。
2 、过程中时间相关的CP破坏为 g和h分别为 的衰变振幅