80 likes | 275 Views
TALES Z MILETU. Maria Usarz kl. I a Justyna Helizanowicz kl. III a. Charakterystyka.
E N D
TALES Z MILETU Maria Usarz kl. I a Justyna Helizanowicz kl. III a
Charakterystyka • Tales z Miletu Tales z Miletu uważany jest za jednego z "siedmiu mędrców" czasów antycznych i za ojca nauki greckiej. Wbrew legendom mędrzec ów należał do ludzi praktycznych, utrzymywał ożywione stosunki handlowe z Egiptem. To było powodem, iż do krajów tych odbywał częste podróże. I prawdopodobnie wtedy zapoznał się z osiągnięciami matematyki i astronomii Egiptu i Babilonii.
Twierdzenie • Pod najbardziej znanym twierdzeniem Talesowi z Miletu przypisuje się autorstwo: • * dowodu, że średnica dzieli koło na połowy; • * odkrycia, że kąty przypodstawne w trójkącie równoramiennym są sobie równe; • * twierdzenia o równości kątów wierzchołkowych; • * twierdzenia o przystawaniu trójkątów o równym boku i przyległych dwu kątach; • * twierdzenia, że średnica koła jest widoczna z punktu leżącego na okręgu pod kątemprostym
Teza • Jeżeli ramiona kąta przecięte są prostymi równoległymi, to odcinki wyznaczone przez te proste na jednym ramieniu kąta, są proporcjonalne do odpowiednich odcinków na drugim ramieniu kąta • Dla poniższych rysunków zachodzi: |AD|:|AE| = |DB|:|EC| = |AB|:|AC| lub po przekształceniu |AE|:|EC| =|AD|:|DB| oraz |AE|:|AC| = |AD|:|AB| a tekże |AC|:|EC| = |AB|:|DB|
Dowód • Dowód oparty jest na dwóch lematach: • * Lemat I. Jeśli dwa trójkąty mają równe wysokości, to stosunek ich pól jest równy stosunkowi długości ich podstaw. • * Lemat II. Jeśli dwa trójkąty mają wspólną podstawę i równe wysokości, to ich pola są równe. • 1. Trójkąty CED i EAD mają wspólną wysokość h', więc na mocy lematu I.: |CE|:|EA|=S(CED):S(EAD) • 2. Trójkąty CED i BDE mają wspólną podstawę ED i równe wysokości h, więc na mocy lematu II.:S(CED)=S(BDE) stąd: S(CED):S(EAD)=S(BDE):S(EAD) • 3. Trójkąty BDE i EAD ma wspólną wysokość, więc na mocy lematu I.: S(BDE):S(EAD)=|BD|:|DA| • Łącząc w jeden zapis otrzymujemy: |CE|:|EA|=S(CAD):S(EAD)=S(BDE):S(EAD)=|BD:|DA|
ODKRYCIE MATEMATYCZNE • Tales uchodzi za pierwszego matematyka, który wprowadził do Grecji geometrię, przyswoiwszy sobie jej zasady w czasie pobytu w Egipcie. Przypisuje mu się następujące twierdzenia: • 1) o przepołowieniu koła przez średnicę, • 2) dwa kąty przy podstawie trójkąta równoramiennego są równe, • 3) jeżeli dwie linie proste przecinają się, przeciwległe kąty są równe, • 4) kąt wpisany w półkole jest kątem prostym, • 5) trójkąt jest określony, jeżeli dana jest jego podstawa i kąty przy podstawie. • Twierdzenia 1-3 przypisywał Talesowi Proklos, powołując się na autorytet Eudemosa. Twierdzenie 4 jest przytoczone przez Diogenesa Laertiosa wraz z informacją, że po wpisaniu trójkąta prostokątnego w koło, Tales złożył bogom wołu w ofierze. Twierdzenie 5 wiąże się z pomiarami odległości okrętów na morzu, ale zarówno to twierdzenie, jak i pomiary wysokości piramid przy pomocy ich cienia, mogły być przeprowadzone w sposób czysto empiryczny, bez odwoływania się do praw geometrii.