150 likes | 432 Views
一 质点运动学习题课. 本章研究质点在空间的位置及其变化,不涉及运动的原因。. 教学要求:. 1.理解质点、参照系、坐标系等概念。 2.掌握位置矢量、位移、速度、加速度的概 念及特点(矢量性,瞬时性,相对性,)。 3.能运用直角坐标系熟练地计算质点运动的速 度和加速度(切向加速度和法向加速度)。. 重点难点:. 运动方程. 位移矢量. 求导. 积分. 速度. 加速度. 平均速度. 即时速度. 速度. 平均速率. 即时速率. 平面直角坐标系. 加速度. 自然坐标系. 直线运动和圆周运动的一些公式对照.
E N D
一 质点运动学习题课 本章研究质点在空间的位置及其变化,不涉及运动的原因。 教学要求: 1.理解质点、参照系、坐标系等概念。 2.掌握位置矢量、位移、速度、加速度的概 念及特点(矢量性,瞬时性,相对性,)。 3.能运用直角坐标系熟练地计算质点运动的速 度和加速度(切向加速度和法向加速度)。
重点难点: 运动方程 位移矢量 求导 积分 速度 加速度
平均速度 即时速度 速度 平均速率 即时速率 平面直角坐标系 加速度 自然坐标系
例: 质点沿曲线运动, 时刻的位置在 时刻的位置在 则 y x
例:一小球沿斜面向上运动,其运动方程为: 则小球运动到最高点的时刻是 √
例: 一质点沿X方向运动,其加速度随时间变化 关系为: ,如果初始时质点 的速度 质点的速度 v=
例:一质点沿直线运动,其运动学方程为 x=6t-t2, x的单位为m,t的单位为s,在t从0到4s的时间 间隔内,质点所走过的路程为 [ ] A 8m B 9m C 10m D 11m C
例:一质点沿x轴运动,其加速度a =ct2(其中c为常 量)。当t =0时,质点位于x0处,且速度为v0, 则在任意时刻t,质点的速度v=, 质点的运动学方程 x =。
例: 质点沿半径为R的圆周运动,运动方程为: 则t时刻质点的 切向加速度大小为 法向加速度大小为 角加速度
例:一质点从静止出发沿半径 R=1m 的圆周运动, 其角加速度随时间 t 的变化规律是: 则质点的角速度 切向加速度 法向加速度 教材P23习题1-12
例: 质点沿曲线运动, 时刻速度为 时刻速度为 那么其速度增量的大小为 而速度大小的增量为
例:一质点从静止出发,沿半径R=3m的圆周运动。例:一质点从静止出发,沿半径R=3m的圆周运动。 切向加速度 ,当加速度与半径 成45o角时,所经过的时间 t= , 在上述时间内质点经过的路程S= 。 教材P23习题1-14 1s 1.5m
解一: (1) (2)
y x 解二: