1 / 8

Deret Taylor

Deret Taylor. Kesalahan yang dihasilkan dari penggunaan suatu aproksimasi pengganti prosedur matematika yang eksak Contoh: approksimasi dengan deret Taylor. Kesalahan:. Kesalahan pemotongan. Aproksimasi orde ke nol (zero-order appr.). Aproksimasi orde ke satu (first-order appr.).

clint
Download Presentation

Deret Taylor

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Deret Taylor

  2. Kesalahan yang dihasilkan dari penggunaan suatu aproksimasi pengganti prosedur matematika yang eksak Contoh: approksimasi dengan deret Taylor Kesalahan:

  3. Kesalahan pemotongan • Aproksimasi orde ke nol (zero-order appr.) • Aproksimasi orde ke satu (first-order appr.) • Aproksimasi orde ke dua (second-order appr.)

  4. Recall the Taylor Series

  5. i-1 i i+1 i+1 i-1 i i-1 i i+1 Finite difference method -1 The Taylor series (1) (2) First-oder difference Forward difference Backward difference Central Difference turunkan juga!

  6. i-2 i-1 i i+1 i+2 Finite difference method -3 High-oder finite difference To reduce the truncation error of finite difference method, high-order finite difference method is frequently employed h (1) Taylor series of five points are, (2) (3) (4) (5) (5) By substituting (2)~(5) into Eq.(1), we have,

  7. Finite difference method -4 (7) The coefficient for the first derivative must be 1 and the others must be zero . By solving 5 linear equations, we get, (8) The order of precision is 4th.

  8. Finite difference method -5 Comparison of finite difference method f(x)=x3, Δx=1,x=2 , analytical solution f’(2)=12 • x f(x) • 0 0 • 1 • 8 • 27 • 64 Forward finite difference Backward finite difference Central difference 4th order finite Central difference Exercise: Calculate above four types of finite differences under condition of f(x)=x, Δx=1, x=2

More Related