1 / 40

Dynamical Influence on Inter-annual and Decadal Ozone Change

Dynamical Influence on Inter-annual and Decadal Ozone Change. Sandip Dhomse, Mark Weber, J.P. Burrows Universtät Bremen FB1 , Insti tüt für Umweltphysik (iup). sandip@iup.physik.uni-bremen.de. http://www.iup.physik.uni-bremen.de. Outline Introduction Data used Inter-annual variability

Download Presentation

Dynamical Influence on Inter-annual and Decadal Ozone Change

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Dynamical Influence on Inter-annual and Decadal Ozone Change Sandip Dhomse, Mark Weber, J.P. Burrows UniverstätBremen FB1, Institüt für Umweltphysik (iup) sandip@iup.physik.uni-bremen.de http://www.iup.physik.uni-bremen.de

  2. Outline • Introduction • Data used • Inter-annual variability • Decadal variability • Tele-connection patterns (Introduction) • Summary and Conclusion • Outlook sandip@iup.physik.uni-bremen.de 11/11/03

  3. Introduction Sun - at the same position No abrupt change in chemical composition sandip@iup.physik.uni-bremen.de 11/11/03

  4. Low TOZ In tropics Relatively High TOZ in tropics during SH spring Total Ozone is higher in NH (spring) than SH (spring) sandip@iup.physik.uni-bremen.de 11/11/03

  5. Wave activity controls • Stratospheric circulation • Stratosphere Troposphere Exchange Holton et al., 1995 sandip@iup.physik.uni-bremen.de 11/11/03

  6. Mean Winter temp. (shaded) And zonal wind (contour) for NH and SH SH – polar jet stronger SH winter- colder Tropopause colder during NH winter sandip@iup.physik.uni-bremen.de 11/11/03

  7. Planetary waves Planetary waves are large-scale distortions to the mean flow The flow (black) meanders across latitude circles (blue). V V sandip@iup.physik.uni-bremen.de 11/11/03

  8. Examples of wave patterns Wave 1 pattern Wave 2 pattern sandip@iup.physik.uni-bremen.de 11/11/03

  9. Brewer-Dobson circulation • Breaking planetary waves apply a FORCE to the winds- decelerates the speed • Pressure gradient force- remains unaffected • Corioli’s force - REDUCED so there is a net force towards the pole. • Air RISES over the equator, drifts steadily POLEWARD (while meandering around the latitude circles) and SINKS at the poles sandip@iup.physik.uni-bremen.de 11/11/03

  10. Measuring the wave activity • Eliassen Palm (EP) flux vector is a measure of the upward propagating momentum carried by planetary waves • The divergence of EP flux gives the volume where momentum is deposited Momentum flux Two components of EP flux are calculated as,(Andrews,et.al 1987) And its divergence is Heat flux sandip@iup.physik.uni-bremen.de 11/11/03

  11. Measuring the wave activity sandip@iup.physik.uni-bremen.de 11/11/03

  12. sandip@iup.physik.uni-bremen.de 11/11/03

  13. Data used Meteorological data set • ERA40 - 23 pressure levels • ERA15 - 17 pressure levels • UK Met. Office - 22 pressure levels • ECMWF - 21 pressure levels • NCEP - 17 pressure levels Ozone data set • GOME - total ozone data • TOMS - total ozone data sandip@iup.physik.uni-bremen.de 11/11/ 03

  14. Inter-annual variation of flux and Ozone High flux- increase in Brewer-Dobson circulation - more transport sandip@iup.physik.uni-bremen.de 11/11/ 03

  15. First major stratospheric warming in SH Splitting of the polar vortex on 26th September 2002 Record high lower stratospheric heat flux on 20th/21st September (ERA40 1960-2002) sandip@iup.physik.uni-bremen.de 11/11/ 03

  16. wave activity and winter gain in ozone Weber et al. 2003 • High correlation between winter heat flux (wave activity) and spring/fall ozone ratio • Winter ozone gain in Antarctic 2002 presents an intermediate case between other Antarctic winters and cold Arctic winters (higher contribution from transport) sandip@iup.physik.uni-bremen.de 11/11/ 03

  17. High Heat flux –Low PSC

  18. Model Differences ERA40 Does dynamics the same? Or Chemistry is changing? ERA40 +ERA15 sandip@iup.physik.uni-bremen.de 11/11/ 03 sandip@iup.physik.uni-bremen.de 11/11/ 03

  19. Decadal Variation? And Difficulties in trend analysis sandip@iup.physik.uni-bremen.de 11/11/ 03

  20. Northern Hemisphere sandip@iup.physik.uni-bremen.de 11/11/ 03

  21. Tropics (50 hPa) One of longest westerly phases of QBO (1993-1996) sandip@iup.physik.uni-bremen.de 11/11/ 03

  22. tropics Mid-latitudes Polar sandip@iup.physik.uni-bremen.de 11/11/ 03

  23. -1.2 K/decade in Nov. and Dec. No SSW since last 17 years in Jan. sandip@iup.physik.uni-bremen.de 11/11/ 03

  24. SH – pre-satellite period – Problem? sandip@iup.physik.uni-bremen.de 11/11/ 03

  25. PSC volume using ERA40 data NH (JUL-JUN) SH (JAN-DEC) T <195 K (PSC volume) sandip@iup.physik.uni-bremen.de 11/11/ 03

  26. Days (Jan-Dec) Days (Jul-Jun) 195 K- PSC temperature SH –colder temperature sandip@iup.physik.uni-bremen.de 11/11/ 03

  27. No significant trend in heat flux sandip@iup.physik.uni-bremen.de 11/11/ 03

  28. Different models – different trends sandip@iup.physik.uni-bremen.de 11/11/ 03

  29. No significant trend in any dataset in heat flux as well as EP Flux sandip@iup.physik.uni-bremen.de 11/11/ 03

  30. Summary • Strong correlation between seasonal heat flux and total ozone in March. • No significant trend on seasonal scale in heat flux. • Maximum cooling trend is in November and January ( -1.2 K/decade) , but there is not trend in heat flux. • Different models, different periods lead to different trends. sandip@iup.physik.uni-bremen.de 11/11/03

  31. Bremen- 10/23/2003 sandip@iup.physik.uni-bremen.de 11/11/03

  32. Arctic Oscillation sandip@iup.physik.uni-bremen.de 11/11/03

  33. Arctic Oscillation From National Geographic Magazine March-2000 sandip@iup.physik.uni-bremen.de 11/11/03

  34. Arctic Oscillation sandip@iup.physik.uni-bremen.de 11/11/03 source : http://www.ldeo.columbia.edu

  35. 28% 45% 30% sandip@iup.physik.uni-bremen.de 11/11/03

  36. 12 % 13% 25% sandip@iup.physik.uni-bremen.de 11/11/03

  37. 8% 11% 8% sandip@iup.physik.uni-bremen.de 11/11/03

  38. Conclusion • There are no significant trends in 2D (latitude & altitude) analysis of the data. • 3D analysis of data will be useful to find the dependence of ozone on different tele-connection patterns. • EOF analysis is good tool for 3D analysis. sandip@iup.physik.uni-bremen.de 11/11/03

  39. Outlook • Study ozone dependence on different tele-connection pattern using EOF technique. • Find out different patterns in the ozone variability using GOME vertical profile data (neural network) , TOMS, SAGE, POAM, ozonesonde datasets. sandip@iup.physik.uni-bremen.de 11/11/03

  40. Thank you very much for your kind attention!!! sandip@iup.physik.uni-bremen.de 11/11/03

More Related