1 / 68

Instituto Nacional de Astrofísica, Óptica y Electrónica INAOE

Instituto Nacional de Astrofísica, Óptica y Electrónica INAOE. Propedéutico de la coordinación de Óptica. Teoría electromagnética. Teoría electromagnética. La carga eléctrica El campo eléctrico El potencial eléctrico La ley de Gauss La capacitancia y la corriente eléctrica

clio
Download Presentation

Instituto Nacional de Astrofísica, Óptica y Electrónica INAOE

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. InstitutoNacional deAstrofísica,ÓpticayElectrónica INAOE

  2. Propedéuticode lacoordinación deÓptica

  3. Teoríaelectromagnética

  4. Teoría electromagnética La carga eléctrica El campo eléctrico El potencial eléctrico La ley de Gauss La capacitancia y la corriente eléctrica Los campos eléctricos en la materia El campo magnético Los campos magnéticos en la materia La ley de Ampere La inducción y la inductancia Las ecuaciones de Maxwell Las ondas electromagnéticas

  5. La teoría electromagnética • VI. Los campos eléctricos en la materia • 1. Los conductores, los semiconductores y los dieléctricos • 2. La polarización • 3. Generalización de la ley de Gauss • 4. Campo producido por un dieléctrico polarizado • 5. Las condiciones de frontera en los dieléctricos • 6. La energía del campo electrostático en los medios materiales

  6. Los dieléctricos

  7. La permitividad eléctrica In electromagnetism, permittivity or absolute permittivity, usually denoted by the Greek letter ε (epsilon), is the measure of resistance that is encountered when forming an electric field in a particular medium. More specifically, permittivity describes the amount of charge needed to generate one unit of electric flux in a particular medium. Accordingly, a charge will yield more electric flux in a medium with low permittivity than in a medium with high permittivity. Thus, permittivity is the measure of a material's ability to resist an electric field, not its ability to ‘permit’ it (as the name ‘permittivity’ might seem to suggest). The permittivity of a dielectric medium is often represented by the ratio of its absolute permittivity to the electric constant. This dimensionless quantity is called the medium’s relative permittivity (εr) or dielectric constant (κ). https://en.wikipedia.org/wiki/Permittivity

  8. La permitividad eléctrica: Medición • The dielectric constant of a material can be found by a variety of static electrical measurements. The complex permittivity is evaluated over a wide range of frequencies by using different variants of dielectric spectroscopy, covering nearly 21 orders of magnitude from 10−6 to 1015hertz. Also, by using cryostats and ovens, the dielectric properties of a medium can be characterized over an array of temperatures. In order to study systems for such diverse excitation fields, a number of measurement setups are used, each adequate for a special frequency range. • Various microwave measurement techniques are outlined in Chen et al.. Typical errors for the Hakki-Coleman method employing a puck of material between conducting planes are about 0.3%.[15] • Low-frequency time domain measurements (10−6 to 103 Hz) • Low-frequency frequency domain measurements (10−5 to 106 Hz) • Reflective coaxial methods (106 to 1010 Hz) • Transmission coaxial method (108 to 1011 Hz) • Quasi-optical methods (109 to 1010 Hz) • Terahertz time-domain spectroscopy (1011 to 1013 Hz) • Fourier-transform methods (1011 to 1015 Hz) • At infrared and optical frequencies, a common technique is ellipsometry. Dual polarisation interferometry is also used to measure the complex refractive index for very thin films at optical frequencies.https://en.wikipedia.org/wiki/Permittivity#Measurement

  9. Ejercicio

  10. Capacitores con dieléctricos

  11. Capacitor de placas paralelas lleno de un dieléctrico NFILH

  12. Capacitor de placas paralelas lleno de un dieléctrico NFILH

  13. Capacitor de placas paralelas lleno de un dieléctrico NFILH

  14. Capacitor de placas paralelas lleno de un dieléctrico NFILH

  15. Ejercicio

  16. Ejercicio

  17. Ejercicio

  18. Capacitor de placas paralelas lleno de un dieléctrico NFILH

  19. La energía del campo electrostático en los medios materiales

  20. Ejercicio

  21. Ejercicio

  22. La generalización de la ley de Gauss

More Related