1 / 22

Interpolants from Z3 proofs

Interpolants from Z3 proofs. Ken McMillan Microsoft Research. TexPoint fonts used in EMF: A A A A A. Interpolating Z3. Deriving Craig interpolants from proofs (feasible interpolation) has a variety of applications in verification: Abstraction refinement

clodia
Download Presentation

Interpolants from Z3 proofs

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Interpolants from Z3 proofs Ken McMillan Microsoft Research TexPoint fonts used in EMF: AAAAA

  2. Interpolating Z3 • Deriving Craig interpolants from proofs (feasible interpolation) has a variety of applications in verification: • Abstraction refinement • Invariant and procedure summary generation, etc. • The required proofs can be derived from SAT or SMT solvers. • Interpolating SMT solvers lag far behind state-of-the art performance. • Z3 proofs not suitable for interpolation in various ways We attempt to close this gap by using Z3 proofs as a guide for a less efficient interpolating prover, without modifying Z3. The result is an interpolating prover with nearly the performance of proof-generating Z3 on a program verification benchmark.

  3. Interpolation Lemma [Craig,57] • If False, there exists an interpolantfor such that: Formulas written using vocabulary of • Example: • , • A proof system has the feasible interpolation property if we can derive an interpolant for from a refutation in polynomial time. • Z3's proof system doesn't have this property, but we want to generate interpolants anyway. To understand the issues, let's look at how a modern SMT solver works.

  4. SAT solvers and resolution proofs • The core of an SMT solver is a DPLL SAT solver. • A basic DPLL SAT solvers produces proofs using the resolution rule: p  : p D _ • Resolution steps are produced by conflict clause generation and arise from the following operations: • Case splits (decisions) • Unit propagation We can efficiently generate interpolants from resolution proofs that are strict...

  5. Strict resolution and interpolation • A formula is local if it is in or . • A clause is strict if it is a disjunction of local formulas. • DPLL produces only strict clauses • We will color local formulas green if they are in and red otherwise. Suppose we have a strict clause implied by A,B: An interpolation of this clause is an interpolant for these formulas: ( An interpolation for the empty clause is an interpolant for .

  6. Interpolation rules for resolution • Suppose we have a strict resolution tree with clauses from and a the leaves: Simple rules allow propagation of interpolations downward in the tree... At the root we have an interpolant for . FALSE

  7. Simple SMT solver • In SMT, our atoms are not just propositional symbols, but may include predicates over functional terms, such as , or . • Satisfiabllity is modulo a theory that gives an interpretation to certain symbols (say, and ). CLAUSES LITERALS DPLL THEORY LEMMAS Lemmas are clauses over existing atoms that are valid in the theory and contradict current truth assignment.

  8. Simple SMT and interpolation • Leaves of resolution tree now include strict theory lemmas. Solver generates proof of lemma Interpolation LEMMA Interpolants propagate downward We rely on theory solvers to generate proofs in a system with feasible interpolation.

  9. A more realistic view • An efficient SMT solver such as Z3 presents a more complex picture. TRANSFORMS LITERALS CLAUSIFY DPLL EQUALITY REWRITING THEORY LEMMAS Simplified clauses UNIT PROP. CASE SPLITS AXIOM INSTANCES

  10. Issues • Z3 does generate proofs, but leaves a number of issues to be resolved for interpolation. • Theory lemmas do not have proofs • Theory propagation • Preprocessing • Axiom instances • Case splits • These problems can be addressed in practice by proof transformations. • The result is a strict resolution proof with interpolated theory lemmas. Non-strict clauses!

  11. Secondary prover • To interpolate the lemmas, we use a secondary interpolating prover. • This can be a simple SMT solver, since high efficiency is not required. Proof of lemma is missing ? LEMMA Secondary prover provides interpolant for these formulas. ( Result is interpolation for lemma.

  12. Extracting strict lemmas • As a result of theory propagation, the resolution tree may embed sub-trees involving theory reasoning. LEMMA SYMM TRANS

  13. Sub-tree to lemma • Resulting derivation must be strict • We extract smallest such sub-tree, to make lemmas small, since they must be interpolated by secondary prover. • Lemma extraction can also remove any non-strict clause from proof • In worst case, extracted tree could be whole proof! LEMMA SYMM TRANS

  14. Eliminating local derivations • Simplifications in pre-processing can introduce large local derivations. If is derived from only, we can pretend it is a clause in and eliminate its proof. Put another way, a purely local lemma can be interpolated using the normal rules without the secondary prover. Thus we seek the largest possible local lemmas.

  15. Quantifier instantiation • Instantiation of axioms in Z3 can produce non-strict clauses. Example: Quantifier instantiation rule not local! • Instantiations can be made local introducing fresh shared symbols. Eliminate fresh symbol in interpolant by adding quantifier. Result: Quantifier instantiation becomes local local!

  16. Implications • Since all instantiations are made local, they can be interpolated without the secondary solver. • Secondary solver need not support quantification or axiomatized theories such as the theory of arrays. • Example: • Z3 handles AUFLIA • Secondary handles only QF_UFLIA (select/store uninterpreted) • Z3 does the hard work of instantiating quantifiers and array theory. Downside is unnecessary quantifiers may be added to interpolants. This can be mitigated by simple quantifier elimination tricks.

  17. Resolution re-ordering • Non-strict clauses can be generated by two sources • Re-writing with equalities during pre-processing • Case splits generated by theory solvers • These can sometimes result in extraction of large lemmas • This can be mitigated by moving non-local literals up in the proof tree by resolution re-ordering • For rewriting, this can be done efficiently by using proofs of equivalence of literals found within the proof.

  18. Overall approach • These proof translation techniques allow us to use unmodified Z3 as the prover. proof proof interp rules Z3 TRANSLATE interpolant lemmas interpolations FOCI The proof translation is exponential in the worst case. We have to determine the overhead in practice empirically.

  19. Benchmark problems • Bounded-depth software model checking. property main procedure instances P ... ... Interpolant is a speculated procedure summary for P. ... ... Motivation: Use Z3's efficient backtracking to cover a large space of execution paths, rather than considering individual paths. F F F F

  20. Experimental setup • Z3 as primary prover (AUFLIA), FOCI as secondary (QF_UFLIA) • Benchmark problems in AUFLIA mainly from driver verification • Two concurrent using Lal/Reps • Measure overhead of proof translation • Compare to some existing interpolating solvers • MathSAT4 (QF_LRA + IDL) • Princess (QF_LIA) • SMTInterpol (QF_LIA) • For these solvers, used Z3 to generate array/quantifier instances • Thus, they are solving easier, quantifier-free, problems

  21. Results • Translation overhead 1%-20% (less for larger problems) • One to two orders of magnitude faster that MathSAT (except memouts) • Z3 proofs are large, but effectively reduced to easy lemmas.

  22. Conclusion • Making an efficient SMT solver interpolating is hard • Using a proof translation we can use an efficient solver (Z3) as a guide for an inefficient interpolating solver. • Resulting proof has lemmas to be interpolated • Interpolating solver need no implement all theories • Overhead of interpolating solver is small if lemmas are simple • First interpolating solver for AUFLIA • Orders-of-magnitude improvement in interpolating solver performance. • Allows computation of full procedure summaries directly as interpolants • Exploits fast backtracking capability of Z3 without modification Interpolation with the efficiency of Z3 may open up new areas of application for interpolating provers.

More Related