1 / 1

Regulation of pristinamycin biosynthesis in S. pristinaespiralis

L-proline. glycine. malonyl-CoA. L-dimethylamino- phenylalanine. malonyl-CoA. malonyl-CoA. L-2-amino- butyric acid. malonyl-CoA. A-group (PII). B-group (PI). malonyl-CoA. L-threonine. L-pipecolic acid. malonyl-CoA. stimulates release of peptidyl-tRNA.

clove
Download Presentation

Regulation of pristinamycin biosynthesis in S. pristinaespiralis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. L-proline glycine malonyl-CoA L-dimethylamino- phenylalanine malonyl-CoA malonyl-CoA L-2-amino- butyric acid malonyl-CoA A-group (PII) B-group (PI) malonyl-CoA L-threonine L-pipecolic acid malonyl-CoA stimulates release of peptidyl-tRNA prevents binding of amino acyl-tRNA L-hydroxy- picolinic acid isobutyryl-CoA serine proline L-phenylglycine Literature: Bamas-Jacques, N., Lorenzon, S., Lacroix, P., de Swetschin, C. andCrouzet, J. 1999. Cluster organizationofthe genes ofStreptomycespristinaespiralisinvolved in pristinamycinbiosynthesisandresistanceelucidatedbypulsed-fieldgelelectrophoresis. Journal of Applied Microbiology 87: 939-948. Folcher, M., Gaillard, H., Nguyen, L.T., Nguyen, K.T., Lacroix, P., Bamas-Jacques, N., Rinkel, M., and Thompson, C.J. 2001.Pleiotropic functions of a Streptomycespristinaespiralisautoregulator receptor in development, antibiotic biosynthesis, and expression of a superoxide dismutase. J. Biol. Chem. 276: 44297-44306. Harms, J.M., Schlünzen, F., Fucini, P., Bartels, H. andYonath, A. 2004. Alterationsatthepeptidyltransferasecentreoftheribosomeinducedbythesynergisticactionofthestreptograminsdalfopristinandquinupristin. BMC Biology2:4. Regulation of pristinamycin biosynthesis in S. pristinaespiralis confirmed Positive regulation papR6 + PII PI suggested Positive regulation - + WT ∆papR1 ∆papR2 ∆papR4 24 48 72 96 24 48 72 96 24 48 72 96 24 48 72 96 papR3 - papR4 - papR5 C (mg/ml) C (mg/ml) papR4 J. Guezguez, Y. Mast, E. Schinkoand W. Wohlleben papR2 University of Tübingen, interfaculty Institute of Microbiology and Infection Medicine, Dpt. Microbiology / Biotechnology, Auf derMorgenstelle 28, 72076 Tübingen, Germany. + + + - papR1 Time (h) Time (h) + papR2 papR1 + + PRISTINAMYCIN MODE OF ACTION Pristinamycin Structural Genes Both compounds alone inhibit the protein biosynthesis by binding to the peptidyltransferase domain of the 50S subunit of the ribosome and are bacteriostatic.The A-grouppreventsthebindingoftheaminoacyl-tRNAtothe 50S subunitoftheribosome. In contrast, the B-groupfacilitatesthereleaseofthepeptidyl-tRNAfromtheribosome (Fig. 2). Together they show a strong synergistic bactericidal activity, which can reach 100 times of the separate components (Harms et al., 2004). The streptograminantibioticpristinamycin, produced by Streptomycespristinaespiralis, is a mixture of two types of chemically unrelated compounds: pristinamycin PI and PII, whichareproduced in a ratioof 30:70. Pristinamycin PI is a cyclic hexadepsipeptide, belonging to the B-group of streptogramins, while pristinamycin PII has the structure of a polyunsaturated macrolactone of the A-group of streptogramins (Fig. 1). I II 5‘ 3‘ 30S A P 50S pristinamycin IIA: dehydroproline pristinamycin IIB: proline pristinamycin IA: R = Me pristinamycin IB: R = H Fig. 2: Schematicpresentationofthemodeofactionof PI and PII. Fig. 1: Structure of pristinamycin I (I) and pristinamycin II (II). PRISTINAMYCIN BIOSYNTHETIC GENE REGION The pristinamycinbiosyntheticgeneclusterispartiallycharacterized. Itcovers a regionofabout 210 kbwhere genes for PI and PII biosynthesisareinterspersed (Fig. 3, table 1). Moreover, thepristinamycincodingregionisinterruptedby a crypticsecondarymetabolitegeneclusterwhichprobablyencodesfor an actinorhodin-likecompound. Fig. 3: Organizationofthepristinamycinbiosyntheticgeneregion. The 70 kb – gapisschematicallyshown in brokenlines. Table 1: List ofpristinamycin genes andtheirfunction in pristinamycinbiosynthesis. REGULATION OF THE PRISTINAMYCIN BIOSYNTHESIS Seven regulatory genes were identified within the 210 kb region: spbR, papR1, papR2, papR3, papR4, papR5 and papR6 . SpbR (S. pristinaespiralisbutyrolactone-responsive transcriptional repressor) is a specific receptor protein for γ-butyrolactones and the global regulator of pristinamycin biosynthesis (Folcheret al., 2001). papR1, papR2 and papR4encode proteins that are homologous to SARPs which are pathway-specific transcriptional activator proteins, whereas papR3 and papR5code both for proteins that belong to the family of TetR repressors. papR6encodes a protein belonging to the class of response regulators (Table 2). Analysis ofΔpapR1andΔpapR2deletionmutantssupportedtheseresults. FurthermorepapR3-, papR4-,papR5-andpapR6-apramycininsertionmutantswereconstructedandtheirphenotypeswereinvestigated. The effectofeachmutation on pristinamycinbiosynthesis was analyzedby HPLC (Fig.4). Fig. 4: Resultsofthe HPLC analysisoftheS. pristinaespiraliswildtype, papR1-, papR2- deletionmutantsandthepapR3-, papR4-, papR5-, papR6-andspbR- apramycininsertionmutants. Pristinamycin PI andPII concentrationswerefollowedoverthe time. Table 2: List ofpristinamycinregulatory genes andtheirdeducedgeneproducts. On thebasisofbandshiftexperimentswewereabletoprovethe global regulatoryandγ-butyrolactonebindingfunctionofSpbR. Furthermore EMSA (Fig. 5) andRT-PCR experiments(Fig. 6) showedthatPapR2 is a hierarchical superior regulatory protein for the transcription of papR1 and the direct activator of the pristinamycin structural genes, whereas PapR1 is a “helper” protein of PapR2. As another SARP homologue, PapR4 couldbe a furtheractivatorofthepristinamycinstructural genes . PapR5, as a TetRrepressorprotein, maytemporarilyretardtheexpressionofpapR1andpapR4 toensurethatthecellsareabletogainself-resistanceagainstpristinamycin. ThisrepressingfunctionofPapR5 couldbeabolishedbythefunctionofanotherTetRrepressor, whichmightbetheroleofPapR3. PapR6 mightcontrolthetranscriptionofpapR4.Assumingtheresultsof RT-PCR, bandshiftandmutantanalysis, a preliminary model oftheregulationmechanismofpristinamycinbiosynthesis was established (Fig. 7). PapR2 PapR4 PapR3 PapR5 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 Pro-papR1 Pro-papR1 Pro-papR4 Pro-papR1 Pro-papR2 Pro-papR3 Pro-papR5 Pro-papR4 Fig.5: EMSA: Binding ofregulatoryproteins PapR2, PapR4, PapR3 and PapR5 topromoterregionsofpapR1, papR3, papR4 andpapR5. 1: Control, 2: Protein, 3: Protein + unspecificcompetitive DNA, 4: Protein + specificcompetitive DNA. Fig. 6 : RT-PCR: TranscriptionofpapR1, papR2 andpapR4 in WT, ∆papR1, ∆papR2and ∆papR4 atseveral time pointsunderproductionconditions. Fig. 7 : Hypotheticalregulationmechanismofpristinamycinbiosynthesis.

More Related