530 likes | 547 Views
Explore the definitions of gas-phase acidity and basicity, connections between gas-phase and solution acidity, and the role of Lewis acids and bases in chemistry. Delve into the acidity of various compounds and the significance of superacids. Learn about the Yagupolskii Principle, carborane anions, and milestones in acid strength measurements. Discover the potential applications of superstrong acids in industries like petrochemical refining, organic synthesis, and catalysis. Unveil the requirements and benefits of using superacids for various chemical processes.
E N D
Connection Between Gas-Phase Acidity and Acidity in Solution
Lewis Acids and Bases A + D: AD e.g.: HF: + BF3 HBF4 HF: + SbF5 HSbF6 HSO3F + SbF5 “Magic acid”
Strong Neutral Acids & Weak Anionic Bases - the common knowledge • Strong and Highly Polarizable Electron-Acceptor Substituents • Extensive Resonance Stabilization of the Anion / Delocalization of Negative Charge • Coplanarity of the Anion • Aromaticity and Antiaromaticity
Acidity of various acids composed of hydrogen H22+ H2+ H3+ H· H2 - 70 100 312 400 (acidity, kcal/mol)
Acidity Scale in Water • CH4 ~ 55 ? • MeOH 15.5 • PhOH 10.0 • H(H2O) 9.7 • NH4+ 9.3 • (CF3)3COH 5.4 • PyH+ 5.2 • AcOH 4.7 • HF 3.4 • H2SO4 -3 • HCl -7 • HBr -9 -11 • HI -11 • CF3SO3H, HClO4 -1 -14 !!??
Effect of Solvation pKa (H2O)PA Py 5.4 224 NH3 9.3 207 = 5.5 = -17 Cl- -7 (?) 333 (CF3)3CO- 5.4 330 = 16.8 = -3 NH3 9.3 207 O2NCH2- 9.3 360 = 0 = 153
A Few Milestones of DGacid CH4 408.5 NH3 396.1 H2 394.2 C6H6 390.1 MeOH 374.0 HF 365.7 SiH4 363.8 PH3 360.7 LiH 351.1 H2S 344.8 MeCOOH 341.7 PhOH 342.3 PhCOOH 331.7 HONO 330.4 HCl 328.0 (CF3)3CH 326.8 HNO3 317.8 HBr 318.8 Ho 312.5 HI 308.9 Tf2CH2 301.5 H2SO4 302.2 CF3SO3H 299.5 Tf3CH 289.0 (C4F9SO2)2NH 284.1 zeolites 290-255
Koppel et al., JACS, 2000, 122, 5114-5124 DFT B3LYP/6-311+G**
Yagupolskii Principle pKa(DMSO) GP 16.3 DpKa=14.1 DpKa=25 8.0 3.2 Koppel et al.,J.Chem.Soc. Perkin 2 2001, 230-234
Generalization of Yagupolskii Principle Why only =NSO2CF3 substitution? • =NX1 • =CX1X2 • =PX1X2X3 • =SX1X2X3X4 • =ClX1X2X3X4X5 X = SO2F, SO2CF3, CN, etc. Koppel et al., JACS, 2002, 124, 5594-5600
Generalization of Yagupolskii Principle 1091 Acidifying Effects of Different Yagupolskii-Type Substituents on the Acidity of CH3C(=X)H (B3LYP/6-311+G**) Koppel et al., JACS, 2002, 124, 5594-5600
New Paradigm for Design of Superstrong Acids - Weak Anionic Bases:Carborane Anions • No Electrons • No “Loose” Lone Electron Pairs • 3-Dimensional -Aromaticity • Extensive Delocalization of Negative Charge • Pseudo-Icosahedral Symmetry
Carboranes • The strongest acids • The least coordinating anions The 1-carba-closo-dodecaborate anion CB11H12–: Koppel et al., JACS, 2000, 122, 5114-5121
Carborane anion CB11H12–: The Distribution of Negative Charge
Carboranes: The Site of Protonation CB11H12–: On B12
Carborane anion CB11F12–: The Distribution of Negative Charge 1068 Times stronger than H2SO4
Carboranes: The Site of Protonation CB11F12–: On substituents
Carborane acids: the Acidity (DFT B3LYP 6-31+G*) and Site of Protonation
Carborane acids: the Acidity (PM3 and HF 3-21G*) and Site of Protonation Acid protonation sitePM3 HF 3-21G* DHacidDHacid CB11H12HB12292260 CB11H11FH 7-8-12266248 CB11H6F6H 7-8-12246234 CB11H6Cl6H Cl12Cl7261237 CB11H6Br6H Br12Br7222236 CB11H6(CN)6H (CN)12263262 CB11H6(CF3)6H (CF3)12(CF3)7221 — CB11H6(SO2CF3)6H Tf12Tf7260 — CB11F12H F12F7229211 CB11Cl12H Cl12Cl7247222 CB11(CN)12H(CN)12241 — CB11(CF3)12H (CF3)12(CF3)7197 — CB11(SO2CF3)12H Tf12Tf7255 —
Carborane Anions CB11(CF3)12– The acid CB11(CF3)12H is expected to have DGacid < 200 kcal/mol That is: 1080 times stronger than H2SO4!
Most Used and Highly Perspective Superstrong Acids and Their Salts • Acids H2SO4, HClO4, CF3SO3H (TfOH), FSO3H, HBF4, HB(TfO)3, HSbF6, HPF6, HPF3(CF3)3, HCTf3, HNTf2, HAl[OC(CF3)3]4 HN[O2SOCH(CF3)2]2, derivatives of CB11H13, HAlCl4, HAlBr4, HB(C6F5)4, Acidic Zeolites, etc • And their salts with cations like Li+, Ti4+, Et4N+, Zr4+, RE3+, imidazolonium (e.g. emimi), etc.
Application of Superstrong Acids and Their Salts • “Classical” Primary and Secondary Batteries (lead/acid, Ni/Cd, Fe/Ni, etc) • Fuel Cells • Lithium-Ion Batteries • Electric Double Layer Capacitors
Application of Superstrong Acids and Their Salts Requirements: • High Conductivity • Thermal and Chemical Stability • Electrochemical Stability • Cheap • User- and Environment-Friendly • Non- Corrosive • Non Hygroscopic • Non- Coordinated Li+ • Low viscosity and high dielectric constant of the medium • Not “too large” anions
Application of Superstrong Acids and Their Salts • Petrochemical refining and cracking of fuel (zeolites) • Organic synthesis • Reusable water-stable catalysts • Oligomerization of olefins, epoxides, ethers, etc. • Enantioselective synthesis Continued ...
Application of Superstrong Acids and Their Salts • Organic synthesis • Diels-Alder reactions • Electrophilic Aromatic Substitutions • Friedel-Crafts reactions • Ionic liquids
Spontaneous Proton Transfer in Gas Phase K2O + H+ = K2OH+ G=324.6 ClO4- + H+ = HClO4G=293.3 K2O + HClO4 = K2OH+ ClO4-G=119.4 K2OH+ + ClO4- = K2OH+ ClO4-G=88.0
Fuel Cells • Alkaline (AFC) • Proton Exchange Membrane (PEM, 40-80 °C) • Phosphoric Acid (PAFC, 80 – 100 °C) • Molten Carbonate (MCFC) 650-700ºC • Solid Oxide (SOFC) 900-1000º C • anode: Ni/YSZ (Nickel/Yttrium-stabilized zirconia) • cathode: perovskite type: LaMnO3, La0.8Ca0.2CrO3 • Hybride Cars
Ford Focus FCV • Fuel Cells • Type: Proton Exchange Membrane (PEM) • Fuel Type: Compressed Hydrogen • Stack Type: Ballard Mark 900 • Voltage: 255v • Fuel Capacity (gls.): 3.1 • Fuel Consumption (Gas Equivalent): 60.0 mpg - City/ 79.0 mpg - Highway • Tank Pressure: 3,600 PSI / 5,000 PSI • Emissions: ZEV
Ford Focus FCV • Electric Motor/Transaxle (Integrated) • Electric Motor: AC Induction • Transaxle: Single Speed • Configuration: Front Wheel Drive • Peak Power: 67 kW (90 hp) • Peak Torque: 190 Nm (140 ft-lbs) • Peak Efficiency: 91% • Traction Inverter Module • Type: 3 Phase Bridge • Max Current: 280 amps • Max/Min Voltage: 420/250 volts • Nominal Voltage: 315 volts • Performance • Range: 100 miles • Acceleration: 0 to 60 in under 14 seconds • Maximum Speed: 80+ mph • Fleet availability: 2004
Lithium-Ion Secondary Battery Cathode: LiNiO2 LiCoO2 LiMn2O4 Anode: Li-metal C(graphite, amorphous carbon, etc) Electrolyte: high conductivity electrochemical stability thermal stability non-toxic low-cost non-coordinating anion “free” Li+ cation
Lithium-Ion Secondary Battery Solvent high D, high polarity low viscosity unflammable non-toxic, env. friendly, etc. MeCN, PC, EC, PC+DEC,PC+MeCN, etc. Separator polyethylene polypropylene Some electrolytes: LiPF6, LiBF4, LiClO4, LiSO3CF3, LiN(SO2CF3)2 LiN(SO2C4F9)2, LiC(SO2CF3)3